PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary integral equations for an anisotropic bimaterial with thermally imperfect interface and internal inhomogeneities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies a thermoelastic anisotropic bimaterial with thermally imperfect interface and internal inhomogeneities. Based on the complex variable calculus and the extended Stroh formalism a new approach is proposed for obtaining the Somigliana type integral formulae and corresponding boundary integral equations for a thermoelastic bimaterial consisting of two half-spaces with different thermal and mechanical properties. The half-spaces are bonded together with mechanically perfect and thermally imperfect interface, which model interfacial adhesive layers present in bimaterial solids. Obtained integral equations are introduced into the modified boundary element method that allows solving arbitrary 2D thermoelacticity problems for anisotropic bimaterial solids with imperfect thin thermo-resistant interfacial layer, which half-spaces contain cracks and thin inclusions. Presented numerical examples show the effect of thermal resistance of the bimaterial interface on the stress intensity factors at thin inhomogeneities.
Rocznik
Strony
66--74
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
  • Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
  • Lutsk National Technical University, Lvivska Str. 75, 43018 Lutsk, Ukraine
  • Ivan Franko National University of Lviv, Universytetska Str. 1, 79000 Lviv, Ukraine
Bibliografia
  • 1. Benveniste Y. (2006), A general interface model for a threedimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Solids, 54, 708–734.
  • 2. Chen T. (2001), Thermal conduction of a circular inclusion with variable interface parameter, Int. J. Solids. Struct., 38, 3081–3097.
  • 3. Hwu C. (1992), Thermoelastic interface crack problems in dissimilar anisotropic media, Int. J. Solids. Struct., 18, 2077–2090.
  • 4. Hwu C. (2010), Anisotropic elastic plates, Springer, London.
  • 5. Jewtuszenko O., Adamowicz F., Grześ P., Kuciej M., Och E. (2014) Analytic and numerical modeling of the process of heat transfer in parts of disc of the brake systems, Publishing House of BUT (in Polish).
  • 6. Kattis M. A., Mavroyannis G. (2006), Feeble interfaces in bimaterials, Acta Mech., 185, 11–29.
  • 7. Muskhelishvili N.I. (2008), Singular integral equations, Dover publications, New York.
  • 8. Pan E., Amadei B. (1999), Boundary element analysis of fracture mechanics in anisotropic bimaterials, Engineering Analysis with Boundary Elements, 23, 683–691.
  • 9. Pasternak Ia. (2012), Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity, Engineering Analysis with Boundary Elements, 36(12), 1931–1941.
  • 10. Pasternak Ia., Pasternak R., Sulym H. (2013a), A comprehensive study on the 2D boundary element method for anisotropic thermoelectroelastic solids with cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements, 37, No. 2, 419–433.
  • 11. Pasternak Ia., Pasternak R., Sulym H. (2013b), Boundary integral equations for 2D thermoelasticity of a half-space with cracks and thin inclusions, Engineering Analysis with Boundary Elements, 37, 1514– 1523.
  • 12. Pasternak Ia., Pasternak R., Sulym H. (2014), Boundary integral equations and Green’s functions for 2D thermoelectroelastic bimaterial, Engineering Analysis with Boundary Elements, 48, 87–101.
  • 13. Qin Q.H. (2007), Green’s function and boundary elements of multifield materials, Elsevier, Oxford.
  • 14. Sulym H.T. (2007), Bases of mathematical theory of thermo-elastic equilibrium of solids containing thin inclusions, Research and Publishing center of NTSh, 2007 (in Ukrainian).
  • 15. Sulym H.T., Pasternak Ia., Tomashivskyy M. (2014), Boundary element analysis of anisotropic thermoelastic half-space containing thin deformable inclusions, Ternopil Ivan Puluj National Technical University, 2014 (in Ukrainian).
  • 16. Ting T.C.T. (1996), Anisotropic elasticity: theory and applications, Oxford University Press, New York.
  • 17. Wang X., Pan E. (2010), Thermal Green’s functions in plane anisotropic bimaterials with spring-type and Kapitza-type imperfect intrface, Acta Mech., 209, 115–128.
  • 18. Yevtushenko A. A., Kuciej M. (2012), One-dimensional thermal problem of friction during braking: The history of development and actual state, International Journal of Heat and Mass Transfer, 55, 4148–4153.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa48d2a7-3d98-40e9-a4a0-84d815ef0508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.