PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined effects of Soret and Dufour on MHD flow of a power-law fluid over flat plate in slip flow rigime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a power-law fluid over a flat plate with velocity, thermal and solutal slip boundary conditions. The governing equations for momentum, energy and mass are transformed to a set of non-linear coupled ordinary differential equations by using similarity transformations. These non-linear ordinary differential equations are first linearized using a quasi-linearization technique and then solved numerically based on the implicit finite difference scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of various governing parameters along with velocity, thermal and mass slip parameters on velocity, temperature and concentration fields are examined graphically. Also, the effects of slip parameters, the Soret and Dufour number on the skin friction, Nusselt number and Sherwood number are studied. Results show that the increase in the Soret number leads to a decrease in the temperature distribution and to an increase in concentration fields.
Rocznik
Strony
689--705
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
  • Department of Sciences, Teegala Krishna Reddy Engineering College Meerpet, Hyderabad-500079, Telangana, INDIA
  • Department of Mathematics, JNTUH College of Engineering Nachupally, Karimnagar-505501, Telangana, INDIA
autor
  • Department of Sciences and Humanities Sreenidhi Institute of Science and Technology Yamnampet, Ghatkesar, Hyderabad-500301, Telangana, INDIA
Bibliografia
  • [1] Sakiadas B.C. (1961): Boundary layer behavior on continuous solid surfaces. I. Boundary layer equations for two dimensional axisymmatric flow. – AIChEJ, vol.7, pp.26-28.
  • [2] Crane L.J. (1970): Flow past a stretching plane. – Z. Angew. Math. Physics, vol.21, pp.645-647.
  • [3] Anjali Devi S.P. and Thyagarajan M. (2006): Steady non-linear hydromagnetic flow and heat transfer over a stretching surface of variable temperature. – Heat Mass Transfer, vol.42, pp.671-677.
  • [4] Chakrabarti A. and Gupta A.S. (1979): Hydromagnetic flow and heat transfer over a stretching sheet. – Q. Appl. Math., vol.37, pp.73-78.
  • [5] Chen C.K. (1988): Laminar mixed convection adjacent to vertical continuously stretching sheets. – Heat Mass Transfer, vol.33, pp.471-476.
  • [6] Blassius (1908): Grenzschichten in Flussigkeiten mit kleiner Reibung. – Z. Math. U. Physics, vol.56, pp.1-36.
  • [7] Abdul-Rahim, Khaled A. and Chamkha Ali J. (2001): Variable porosity and thermal dispersion effects on coupled heat and mass transfer by natural convection from a surface embedded in a non-metallic porous medium. – International Journal of Numerical Methods for Heat and Fluid Flow, vol.11, No.5, pp.413-419.
  • [8] Pop I. and Takhar H. (1983): Thermal convection near a partly insulated vertical flat plate embedded in a saturated porous medium. – Mechanics Research Communications, vol.10, No.2, pp.83-89.
  • [9] Elabashbeshy E.M., Emam T.G. and Abdel-Wahed M.S. (2011): Three dimensional flow over a stretching surface with thermal radiation and heat generation in the presence of chemical reaction and suction/injection. – International Journal of Energy Technology, vol.16, pp.1-8.
  • [10] Nadeem S., Hussian A. and Khan M. (2010): Ham solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet. – Communications in Nonlinear Science and Numerical Simulation, vol.15, No.3, pp.475-481.
  • [11] Lukaszewicz G. (2003): Asymptotic behavior of micro-polar fluid flows. – International Journal of Engineering Science, vol.41, No.3, pp.259-69.
  • [12] Kishan N. and Shashidar Reddy B. (2011): Quasi-linearization approach to MHD effects on boundary layer flow of power-law fluids past a semi infinite plate with thermal dispersion. – International Journal of Non-Linear Science, vol.11, No.3, pp.301-311.
  • [13] Muhaimin R.K. and Khamis A.B. (2008): Effects of heat and mass transfer on non-linear MHD boundary layer flow over a shrinking sheet in the presence of suction. – Applied Mathematics and Mechanics (English Edition), vol.29, No.10, pp.1309-1317. DOI 10.1007/s10483-008-1006-z.
  • [14] Mostafa A.A., Mahmoud Ahmed and Megahed M. (2012): Non-uniform heat generation effect on heat transfer of a non-Newtonian power-law fluid over a non-linearly stretching sheet. – Mechanica, vol.47, pp.1131-1139.
  • [15] Madhu M. and Kishan N. (): Magnetohydrodynamic mixed convection stagnation-point flow of a power-law non- Newtonian nanofluid towards a stretching surface with radiation and heat source/sink. – Journal of Fluids Dx.doi.org/10.1155/2015/634186.
  • [16] Hamad M.A.A., Uddin M.J. and Ismail A.I.M. (2012): Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions. – International Journal of Heat and Mass Transfer, vol.55, No.4, pp.1355-1362.
  • [17] Olajuwon B.I. (2013): Effect of thermo diffusion and chemical reaction on heat and mass transfer in a power-law fluid over a flat plate with heat generation. – International Journal of Non-Linear Science, vol.15, No.2, pp.117- 127.
  • [18] Kishan N. and Shashidar Reddy B. (2013): MHD effects on non-Newtonian power-law fluid past a moving porous flat plate with heat flux and viscous dissipation. – International Journal of Applied Mechanics and Engineering, vol.18, No.2, pp.425-445.
  • [19] Postenicu A. (2004): Influence of magnetic field on heat and mass transfer from a vertical surfaces in porous media considering Soret and Dufour effects. – International Journal Heat and Mass Transfer, vol.47, pp.1467- 1472.
  • [20] Mohammad M.R., Ali M., Behnam R., Peyman R. and Gong-Nan Xie (): Heat and mass transfer for MHD viscoelastic fluid flow over a vertical stretching sheet with considering Soret and Dufour effects. – Mathematical Problems in Engineering Dx.doi.org/10.1155/2015/861065.
  • [21] Pal D. and Chatterjee S. (2013): Soret and Dufour effects on MHD convective heat and mass transfer of a powerlaw fluid over an inclined plate with variable thermal conductivity in a porous medium. – Applied Mathematics and Computation, vol.219, pp.7556-7574.
  • [22] Wubshet Ibrahim and Bandari Shankar (2013): MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal solutal slip boundary conditions. – Computers and Fluids, vol.75, pp.1-10.
  • [23] Hirschhorn J., Madsen M., Mastroberardino A. and Siddique J.I. (2016): Magnetohydrodynamic boundary layer slip flow and heat transfer of power-law fluid over a flat plate. – Journal of Applied Fluid Mechanics, vol.9, No.1, pp.11-17.
  • [24] Shashidar Reddy B., Kishan N. and Rajasekhar M.N. (2012): MHD boundary layer flow of a non-Newtonian power-law fluid on a moving flat plate. – Advances in Applied Science Research, vol.3, No.3, pp.472-1481.
  • [25] Bellman R.E. and Kalaba R.E. (1965): Quasi-Linearization and Non-linear Boundary Value Problems. – New York: Elsevier.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa4612bf-f4c4-406b-9122-7aab8803019b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.