PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiple-ring Circular Arrayfor Ground-Penetrating Radar Applications : Basic Ideas and Preliminary Results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the possibility of using a multiple-ring circular array as an antenna array for Ground-Pene-trating Radar systems is investigated. The theory behind theproposed idea is presented. The preliminary numerical re-sults that are obtained suggest that the proposed congura-tion is promising. It allows achieving a wide frequency bandand low dynamic range ratio of excitations, thus simplifyingthe feeding network. Further interesting requirements maybe satised by exploiting a combination of deterministic andstochastic synthesis techniques to design the array.
Rocznik
Tom
Strony
25--29
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Department of Engineering and Architecture, University of Trieste, Trieste, Italy
autor
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
Bibliografia
  • [1] A. Benedetto and L. Pajewski, Eds., Civil Engineering Applications of Ground Penetrating Radar, Book Series: Springer Transactions in Civil and Environmental Engineering. Springer, 2015 (doi: 10.1007/978-3-319-04813-0).
  • [2] R. Persico, Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing. Wiley-IEEE Press, 2014.
  • [3] F. Tosti, S. Adabi, L. Pajewski, G. Schettini, and A. Benedetto, “Large-scale analysis of dielectric and mechanical properties of pavement using GPR and LFWD”, in Proc. 15th Int. Conf. on Ground Penetrat. Radar GPR 2014, Brussels, Belgium, 2014, pp. 868–873 (doi: 10.1109/ICGPR.2014.6970551).
  • [4] E. Huuskonen-Snicker, P. Eskelinen, T. Pellinen, and M.-K. Olkkonen, “A new microwave asphalt radar rover for thin surface civil engineering applications”, Frequenz J. of RF-Engin. and Telecommun., vol. 69, no. 7–8, pp. 377–381, 2015 (doi: 10.1515/freq-2015-0034).
  • [5] R. Persico and G. Leucci, “Interference mitigation achieved with a reconfigurable stepped-frequency GPR system”, Remote Sensing, vol. 8, no. 11, Article no. 926, 2016 (doi: 10.3390/rs8110926).
  • [6] V. Ferrara, F. Troiani, F. Frezza, F. Mangini, L. Pajewski, P. Simeoni, and N. Tedeschi, “Design and realization of a cheap Ground Penetrating Radar prototype @ 2.45 GHz”, in Proc. 10th IEEE Eur. Conf. on Antenn. and Propag. EuCAP 2016, Davos, Switzerland, 2016, pp. 1–4 (doi: 10.1109/EuCAP.2016.7482008).
  • [7] L. Pajewski, R. Persico, S. Chicarella, V. Ferrara, F. Frezza, and F. Troiani, “Ground Penetrating Radar prototypes developed in COST Action TU1208”, in Proc. 24th Int. Conf. on Software, Telecommun. and Comp. Netw. SoftCOM 2016, Split, Croatia, 2016, pp. 1–5.
  • [8] C. Warren, A. Giannopoulos, N. Diamanti, and P. Annan, “An extension module to embed commercially sensitive antenna models in gprMax”, in Proc. 8th Int. Worksh. on Adv. Ground Penetrat. Radar IWAGPR 2015, Florence, Italy, 2015, pp. 1–3 (doi: 10.1109/IWAGPR.2015.7292623).
  • [9] C. Warren and A. Giannopoulos, “Experimental and modeled performance of a ground penetrating radar antenna in lossy dielectrics”, IEEE J. of Selec. Topics in Appl. Earth Observ. and Remote Sensing (JSTARS), vol. 9, no. 1, pp. 29–36, 2016 (doi: 10.1109/JSTARS.2015.2430933).
  • [10] E. Eide, P. A. V˚aland, and J. Sala, “Ground-coupled antenna array for step-frequency GPR”, in Proc. 15th Int. Conf. on Ground Penetra. Radar GPR 2014, Brussels, Belgium, 2014, pp. 756–761 (doi: 10.1109/ICGPR.2014.6970527).
  • [11] L. Pajewski, F. Tosti, and W. Kusayanagi, “Antennas for GPR Systems”, in Civil Engineering Applications of Ground Penetrating Radar, Book Series: Springer Transactions in Civil and Environmental Engineering, A. Benedetto and L. Pajewski, Eds. Springer, 2015, pp. 41–67 (doi: 10.1007/978-3-319-04813-0 2).
  • [12] S. Chicarella, V. Ferrara, F. Frezza, A. D’Alvano, and L. Pajewski, “Improvement of GPR tracking by using inertial and GPS combined data”, in Proc. 24th Int. Conf. on Software, Telecommun. and Comp. Netw. SoftCOM 2016), Split, Croatia, 2016, pp. 1–5 (doi: 10.1109/SOFTCOM.2016.7772148).
  • [13] R. Vescovo, L. Pajewski, and F. Tosti, “State-of-the-art and trends of Ground-Penetrating Radar antenna arrays”, Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2016, article ID EGU2016-18097, 2016, Vienna, Austria.
  • [14] G. Buttazzoni and R. Vescovo, “An efficient and versatile technique for the synthesis of 3D copolar and crosspolar patterns of phaseonly reconfigurable conformal arrays with DRR and near-field control”, IEEE Trans. on Antenn. and Propag., vol. 62, no. 4, part 1, pp. 1640–1651, 2014.
  • [15] B. Fuchs, “Synthesis of sparse arrays with focused or shaped beampattern via sequential convex optimizations”, IEEE Trans. on Antenn. and Propag., vol. 60, no. 7, pp. 3499–3503, 2012.
  • [16] C. Warren, A. Giannopoulos, and I. Giannakis, “gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar”, Comp. Phys. Commun., vol. 209, pp. 163–170 (doi: 10.1016/j.cpc.2016.08.020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa40e9d1-ed18-4851-ae53-cd2271572afb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.