Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the effect of geometry and impedance on the acoustic behavior of wall and lined cylindrical ducts is investigated using a numerical model which enables one to compute the reflection and the transmission coefficients of such ducts using the multimodal scattering matrix. From this matrix, the acoustic power attenuation is deduced. By using these tools, the effect of duct diameter increase and duct diameter decrease of the wall or lined duct section is studied. The numerical results are obtained for two configurations of wall and lined ducts. Numerical coefficients of transmission and reflection as well as the acoustic power attenuation show the relative influence of each type of variation.
Czasopismo
Rocznik
Tom
Strony
679--694
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
autor
- Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
autor
- Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
autor
- Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
Bibliografia
- 1. Abom M., 1991, Measurement of the scattering matrix of acoustical two-ports, Mechanical Systems Signal Processing, 5, 2, 89-104
- 2. Aur´egan Y., Starobinski R., 1998, Determination of acoustical energy dissipation/production potentiality from the acoustic transfer functions of a multiport, Acta Acustica United with Acustica, 85, 788-792
- 3. Ben Jdidia M., Akrout A., Taktak M., Hammami L., Haddar M., 2014, Thermal effect on the acoustic behavior of an axisymmetric lined duct, Applied Acoustics, 86, 138-145
- 4. Bi W.P., Pagneux V., Lafarge D., Aur´egan Y., 2006, Modelling of sound propagation in non-uniform lined duct using a multi-modal propagation method, Journal of Sound and Vibration, 289, 1091-1111
- 5. Delany M.E., Bazley E.N., 1970, Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, 105-116
- 6. Elnady T., Boden H., 2003, On semi-empirical liner impedance modeling with grazing flow, Proceedings of 9th AIAA/CEAS Aeroacoustics Conference, U.S.A.
- 7. Leroux M., Job S., Aur´egan Y., Pagneux V., 2003, Acoustical propagation in lined duct with flow. Numerical simulations and measurements, 10th International Congress of Sound and Vibration, Stockholm, Sweden, 3255-3262
- 8. Sitel A., Ville J.M., Foucart F., 2006, Multimodal procedure to measure the acoustic scattering matrix of a duct discontinuity for higher order mode propagation conditions, Journal of the Acoustical Society of America, 120, 5, 2478-2490
- 9. Taktak M., Majdoub M.A., Bentahar M., Haddar M., 2012, Numerical modelling of the sound propagation in axisymmetric lined flow duct, Archives of Acoustics, 37, 2, 151-160
- 10. Taktak M., Majdoub M.A., Bentahar M., Haddar M., 2013, Numerical characterization of an axisymmetric lined duct with flow using multimodal scattering matrix, Journal of Theoretical and Applied Mechanics, 51, 2, 313-325
- 11. Taktak M., Ville J.M., Haddar M., Gabard G., Foucart F., 2010, An indirect method for the characterization of locally reacting liners, Journal of the Acoustical Society of America, 127, 6, 3548-3559
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa3dce1b-4867-43dc-b027-8e0f657b6f4a