PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of temperature and hardness distribution during dual frequency induction hardening of gear wheels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Induction surface hardening means the hardening of a thin zone of the material only, while its core remains soft. The paper deals with the modelling of the Consecutive Dual Frequency Induction Hardening (CDFIH) of gear wheels and its validation. For gear wheels with modulus m smaller than 6 mm a contour profile of hardness distribution could be obtained. The investigated gear wheel is heated first by a medium frequency inductor to the temperature approximately equal to the modified lower temperature Ac1m. It means beginning of the austenite transformation. Then the gear wheel is heated by the high frequency inductor to the hardening temperature making it possible to complete the austenite transformation and immediately cooled. In order to design the process it is necessary to identify modified critical temperatures and to obtain expected temperature distribution within the whole tooth.
Rocznik
Strony
913--923
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
autor
  • Silesian University of Technology Krasińskiego 8, Katowice, Poland
Bibliografia
  • [1] Rudnev V., Totten G., Induction Heating and Heat Treatment, ASM International (2014).
  • [2] Barglik J., Ducki K., Mathematical Modelling of continual induction surface hardening of axi-symmetric bodies, Archives of Electrical Engineering, vol. 54, no. 4, pp. 479–487 (2005).
  • [3] Barglik J., Induction hardening of steel elements with complex shapes, Przegl˛ad Elektrotechniczny, vol. 94, no. 4, pp. 51–54 (2018).
  • [4] Barglik J., Induction surface hardening – comparison of different methods, Przegl˛ad Elektrotechniczny, vol. 94, no. 7, pp. 6–11 (2018).
  • [5] Doležel I., Barglik J., Sajdak C., Škopek M., Ulrych B., Modelling of Induction Heating and Consequent Hardening of Long Prismatic Bodies, COMPEL – the International Journal for Computation and Mathematics in Electrical and Electronic engineering, vol. 22, no. 1, pp. 79–87 (2003).
  • [6] Doležel I., Barglik J., Ulrych B., Continual induction hardening of axi-symmetric bodies, Elselvier, Journal of Materials Processing Technology, vol. 161, no. 1–2, pp. 269–275 (2005).
  • [7] Barglik J., Induction Hardening of Steel Tubes by Means of Internal Inductor, Journal of Iron and Steel Research International, vol. 19, no. 1–2, pp. 722–725 (2012).
  • [8] Barglik J., Doležel I., Ducki K., Ulrych B., Mathematical and Computer Modelling of Induction Heating and Consequent Hardening of Circular Saw, IOS Press Studies in Electromagnetics and Mechanics, vol. 22, pp. 351–356 (2002).
  • [9] Midea J., Lynch D., Induction Hardening of Gears, Thermal Processing, no. 4, pp. 46–51 (2014).
  • [10] Barglik J., Smagór A., Smalcerz A., Computer Simulation of Single Frequency Induction Surface Hardening of Gear Wheels: Analysis of Selected Problems, International Journal of Microstructure and Materials Properties, vol. 13, pp. 4–15 (2018).
  • [11] Spezzapria M., Forzan M., Dughiero F., Numerical Simulation of Solid–Solid Phase Transformations During Induction Hardening, IEEE Transactions of Magnetics, vol. 52, no. 3, pp. 740–743 (2016).
  • [12] Standard DIN EN 10328, Determination of the conventional depth of hardening after surface heating (2005).
  • [13] Barglik J., Smagór A., Smalcerz A., Induction hardening of gear wheels of steel 41Cr4, International Journal of Applied Electromagnetics and Mechanics, vol. 57, suppl. 1, pp. S3–S12 (2018).
  • [14] Lupi S., Fundamentals of Electroheat: Electrical Technologies for Process Heating, Springer (2016).
  • [15] https://www.astmsteel.com/product/4340-steel-aisi, accessed April 2018.
  • [16] Barglik J., Mathematical modelling of induction surface hardening, Compel – the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35, no. 35, pp. 1403–1417 (2016).
  • [17] Nacke B., Wrona E., Design of complex induction hardening problems by means of numerical simulation, Archives of Electrical Engineering, vol. 54, no. 4, pp. 461–466 (2005).
  • [18] Barglik J., Smalcerz A., Influence of the magnetic permeability on modelling of induction surface hardening, COMPEL – the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 36, iss. 2, pp. 555–564 (2017).
  • [19] Barglik J., Smagór A., Smalcerz A., Kopeć G., Experimental stand for investigation of induction hardening of steel elements, Metalurgija, vol. 57, no. 4, pp. 341–344 (2018).
  • [20] Wróbel T., The influence of inoculation type on structure of pure aluminium, Proceedings of 21st International Conference on Metallurgy and Materials, Kraków, Poland, pp. 1114–1120 (2012).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa38854d-bbc3-4251-8559-3883c184a304
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.