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Abstract. In this contribution, free vibration of axially functionally graded beams is ana-

lysed within the framework of the Euler-Bernoulli beam theory. The beams with uniaxial 

variation of the elasticity modulus and mass density are approximated by an equivalent 

beam with piecewise exponentially varying geometrical and material properties. A numeri-

cal example for a beam with pinned ends is presented. 
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Introduction 

Functionally graded (FG) beams are composites characterized by the volume 

fraction of different materials (ceramic and metal) which is varied continuously 

with the thickness and/or the length of the beam. Through an appropriate selection 

of the volume fraction the FG beam with expected thermal and mechanical proper-

ties can be obtained. Therefore, the FG beams can be used in various engineering 

applications. 

Vibration of non-homogenous beams is the subject of investigations presented 

in many papers. The free vibrations of FG beams was analyzed by using various 

methods in papers [1-5]. The finite element method to the free vibration problem of 

a FG beams was applied by Alshorbagy et al. in paper [1]. The presented analysis 

concerns the FG beams assuming a simple power law of a change of the material 

distribution through the thickness or the longitudinal direction. Hein and Feklistova 

[2] present an application of the Haar wavelet approach to free vibrations of FG 

beams with various boundary conditions and varying cross-sections. In paper [3] 

by Anandrao et al. the finite element system of equations to free vibration analysis 

of the FG beams is derived. The variation of material properties across the thick-

ness of the beam was governed by a power law distribution. The free vibration and 

stability of tapered beams made of axially FG materials were studied by Shahba 

and Rajasekaran [4]. The solution to the problem was obtained by applying a dif-

ferential transform element method. The exact solution to free vibration of axially 

exponentially graded beams is presented by Li et al. in reference [5]. Free vibration 
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of axially FG beams consisting of two segments was studied in paper [6]. The ana-

lytical solution to the problem was obtained by assumption that the changes of the 

cross-sectional area and material properties in the beam segments have an expo-

nential form. 

This paper presents a solution to the problem of free vibration of a beam con-

sisting of an arbitrary number of axially exponentially graded beam segments. 

The frequency equation is numerically solved. The eigenfrequencies are presented 

in a tabular form. 

1. Mathematical formulation of the problem 

Consider an axially graded and non-uniform beam of length L. It is assumed 

that material properties and/or cross-section of the beam vary continuously along 

the length direction. According to the Euler-Bernoulli beam theory, the governing 

differential equation is given by 
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where x  is axial coordinate, ( )txw ,  is the transverse deflection of the beam at the 

position x and time t, ( )xE  is the Young’s modulus, ( )xI  denotes the moment of 

inertia, ( )xρ  and ( )xA  denote the mass density and cross-sectional area, respec-

tively. In this contribution it is assumed that 

 ( ) ( ) ( ) ( ) ( ) ( ) ,0, LxxmfxAxxDfxIxE <<== ρ  (2) 

where D is a reference value of EI at 0=x , m is a reference value of Aρ  at 0=x  

and f is a function which has continuous derivatives up to the second order. 
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Denoting the length of the i-th element as 
1−

−=∆
iii
xxx , the gradient parameters 

i
β  are given by 
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Assuming the transverse displacement of the beam in the form ( ) ( )txwtxw
i

,, =  for 

ii
xxx <<

−1
, ni ,...,1= , the governing equation for such a piecewise beam can be 

expressed by 
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Setting 

 ( ) ( ) ,,...,1,sin, nitxWtxw
ii

== ω  (7) 

where ( )xW
i

, ni ,...,1= , are the corresponding amplitude functions and ω  is the 

circular frequency of the beam, one obtains 
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Introducing the non-dimensional variables 
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equations (8) can be rewritten as 
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After some transformations we can rewrite equations (10) as follows: 
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2. Solution of the free vibration problem 

The general solution of equations (11) has the following form 
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The above solutions will be applied to boundary conditions for pinned-pinned 

beam as follows 
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The matching conditions between two connecting elements of the piecewise beams 

satisfy the following continuity conditions 
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Substituting functions (12) into boundary and continuity conditions given by equa-

tions (13) and (14), we obtain the free vibration problem in the form 

 ( ) 0XA =⋅ω  (15) 

where [ ]T
nnnn

DCBADCBA ,,,,...,,,,

1111
=X  and ( ) nnkja 44

][
×

=ωA . Two first rows of 

the matrix A  represent the boundary conditions at 0=ξ  and two last rows of A  

represent the boundary conditions at 1=ξ . The rows of the matrix A  with non-

zero elements 34,14 −− ii
a ,…, 44,14 +− ii

a , 34,4 −ii
a ,…, 44,4 +ii

a , 34,14 −+ ii
a ,…, 44,14 ++ ii

a , 

34,24 −+ ii
a ,…, 44,24 ++ ii

a , 1,...,1 −= ni , are determined by the continuity conditions 

at 
i
ξξ = , 1,...,1 −= ni . The determinant of the matrix A  has to vanish for a non-

trivial solution of the frequency equation of the beam under consideration to exist. 

Frequency equation 

 ( ) 0det =ωA  (16) 

is then solved numerically using an approximate method. 

3. Numerical example 

The numerical computations were performed for pinned-pinned FG beam 

with n segments of the same length. The function ( )⋅f  occurring in equations 

(2), (3) is assumed in one of the forms: ( ) pf ξξ +=1  for p = 0.5; 1.0; 2.0, 

or ( ) ( )πξξ af sin5.01+=  for a = 1.0; 2.0; 3.0, where Lx=ξ . The calculations 

were carried out for various numbers of segments n = 2; 5; 10; 15. 
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Table 1 

Four dimensionless eigenfrequencies of the FG beam with n segments of constant 

length with ( ) pξξf += 1  

n 

p 
2 5 10 15 

0.5 

3.001006 3.010238 3.036439 3.045427 

6.285830 6.173596 6.187237 6.198689 

9.388662 9.354648 9.335179 9.344616 

12.570167 12.538667 12.486328 12.489851 

1 

3.095507 3.096357 3.096695 3.096761 

6.286651 6.266571 6.266667 6.266697 

9.415975 9.415099 9.415025 9.415040 

12.569686 12.560122 12.559585 12.559592 

2 

3.207782 3.207477 3.207418 3.207406 

6.286086 6.326810 6.327096 6.327154 

9.454665 9.455613 9.455755 9.455796 

12.569836 12.589830 12.590206 12.590236 

Table 2 

Four dimensionless eigenfrequencies of the FG beam with n segments of constant 

length with ( ) )( ξaπξf 0.5sin1+=  

    n 

a 
2 5 10 15 

1 

2.810172 2.836856 2.838765 2.839073 

6.278107 6.145092 6.145823 6.145838 

9.339187 9.337856 9.339502 9.339522 

12.568765 12.501314 12.504811 12.504871 

2 

3.141592 2.654107 2.602609 2.593108 

6.283185 6.393857 6.475257 6.491527 

9.424777 9.451843 9.422380 9.427523 

12.566370 12.575262 12.555303 12.553347 

3 

3.460695 2.806813 2.699744 2.680683 

6.268350 5.128893 4.988445 4.948780 

9.573864 9.012672 9.379156 9.428255 

12.573379 12.668699 12.271558 12.255414 

 

Four dimensionless eigenfrequencies for the function ( ) pf ξξ +=1  are pre-

sented in Table 1 and for the function ( ) ( )πξξ af sin5.01+=  are shown in Table 2. 
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From Table 1 it is seen that the obtained results for 5=n  and 10=n  differ at most 

by 0.87% and for 10=n  and 15=n  they differ at most by 0.29%. Analogous 

comparison from Table 2 gives the differences of the results 4.07 and 0.79%, 

respectively. 

Conclusions 

The main conclusion of this contribution is that the proposed approach can be 

applied to the analysis of free vibration problems for axially functionally graded 

beams. The primary idea presented here is to approximate the FG beam by the 

beam with piecewise exponentially varying geometrical and material properties. 

The example shows that the accuracy of the numerically obtained eigenfrequencies 

improves as the number of segments increases. The numerical example presented 

in this paper concerns a pinned-pinned beam, but the proposed method may be 

used in the vibration analysis of FG beams with other boundary conditions. 
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