PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Framework for fast simulations of material science phenomena with Cahn-Hilliard equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Framework służący do wydajnej symulacji zjawisk fizycznych w inżynierii materiałowej z wykorzystaniem wzorów Cahna-Hilliarda
Języki publikacji
EN
Abstrakty
EN
This paper presents the framework for executing Cahn-Hilliard simulations through a web interface which is based on a popular continuous integration tool called Jenkins. This setup allows launching computations from any machine, in the client mode, and without the need to sustain a connection to the computational environment. It also isolates the researcher from the complexity of the underlying infrastructure and reduces the number of steps necessary to perform the simulations. Moreover, the results of the computations are automatically post-processed and stored upon job completion for future retrieval in the form of raw data, a sequence of bitmaps, as well as a video sequence illustrating changes in the material structure over time. The Cahn-Hilliard equations are parameterized with mobility and chemical potential function, allowing for several numerical applications. The discretization is performed with Isogeometric finite element method, and it is parameterized with the number of time steps, the time step size, the mesh size, and the order of the B-spline basis functions using for the approximation of the solution. The interface is linked with the alternating direction semi-implicit solver, resulting in a linear computational cost of the simulation.
PL
W niniejszej pracy przedstawiamy framework służący do przeprowadzania symulacji opartych o wzory Cahna-Hilliarda poprzez wygodny interfejs webowy. Wykorzystujemy do tego popularne narzędzie służące do ciągłej integracji o nazwie Jenkins. Tego typu konfiguracja pozwala na uruchamianie obliczeń z dowolnej maszyny w trybie klienckim bez konieczności utrzymywania połączenia do środowiska obliczeniowego. Dzięki temu naukowiec wykonujący obliczenia jest odizolowany od skomplikowanej infrastruktury obliczeniowej, a uruchomienie symulacji wymaga mniejszej liczby czynności. Ponadto, wyniki symulacji są automatycznie przetwarzane i prezentowane w formie tabularycznej, sekwencji bitmap oraz filmu, który odzwierciedla zmiany zachodzące w strukturze badanego materiału w czasie. Równania Cahna-Hilliarda są parametryzowane poprzez funkcje mobilności i potencjału chemicznego, co pozwala na przeprowadzanie symulacji wybranych zjawisk dla wielu materiałów. Dyskretyzacja jest wykonywana z wykorzystaniem Izogeometrycznej Metody Elementów Skończonych i jest uzależniona od liczby i rozmiaru kroków czasowych, wielkości siatki oraz rzędu krzywych B-sklejanych, użytych do aproksymacji rozwiązania. Interfejs, o którym mowa, konfiguruje solwer zmienno-kierunkowy z dyskretyzacją czasową schematem wprost, co skutkuje liniowym kosztem obliczeniowym symulacji.
Wydawca
Rocznik
Strony
12--20
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
  • Department of Computer Science, Faculty of Electronics, Telecommunication and Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków Poland
  • Department of Computer Science, Faculty of Electronics, Telecommunication and Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków Poland
  • Department of Applied Computer Science and Modelling, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Applied Geology, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia
Bibliografia
  • Cottrel, J. A., Hughes, T.J.R., Bazilevs, Y., 2009, Isogeometric Analysis. Toward Integration of CAD and FEA, Wiley, London.
  • Elliot, C. M., 1989, The Cahn-Hillard model for the kinetics of phase separation, Mathematical Models for Phase Problems, International Series on Numerical Mathematics, 88 Birkhäuser-Verlag, Basel, 35-73.
  • Garcia, D., Pardo, D., Dalcin, L., Paszynski, M., Collier, N., Calo, M. V., 2016, The value of continuity: Refined Isogeometric analysis and fast direct solvers, Computer Methods in Applied Mechanics and Engineering, 316, 586-605.
  • Gomez, H., Hughes, T.J., 2011, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, Journal of Computational Physics, 230, 5310-5327.
  • Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J., 2008, Isogeometric analysis of the Cahn-Hilliard phase-field model, Computer Methods in Applied Mechanics and Engineering, 197, 4333-4352.
  • Mecozzi, M.G., Sietsma, J., van der Zwaag, S., Apel, M., Schaffniy, P., Steinbach, I., 2005, Analysis of the gamma to alpha Transformation in C-MN Steel by Phase-Field Modeling, Metallurgical and Materials Transactions A, A36, 2327-2340.
  • Paszyński, M., Gurgul, G., Łoś, M., Szeliga, D., 2018a, Computational cost of two alternative formulations of CahnHilliard equations, ESAFORM 2018: Proc. 21st Int. Conf. on Material forming, eds, Fratini, L., Di Lorenzo, R., Buffa, G., Ingarao, G., AIP Conference Proceedings 1960, 090009; https://doi.org/10.1063/ 1.5034935, Palermo.
  • Paszyński, M., Gurgul, G., Cortes, A., Szeliga, D., 2018b, Comparison of solvers for two formulations of Cahn-Hilliard equations, Procedia Manufacturing, 15, 1900–1907.
  • Puzyrev, V., Łoś, M., Gurgul, G., Calo, V.M., Dzwinel, W., Paszyński, M., 2019, Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation, 2018, submitted to Computer Methods in Biomechanics and Biomedical Engineering.
  • Schaefer, R., Smołka, M., Dalcin, L., Paszyński, M., 2015, A new time integration scheme for Cahn-Hilliard equations, Procedia Computer Science, 51, 1003-1012.
  • Woźniak, M., 2015, Fast GPU integration algorithm for Isogeometric finite element method solvers using task dependency graphs, Journal of Computational Science, 11, 145-152.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa32ccc9-b590-4b76-ab9d-8e8bfd2ed9bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.