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Abstract 

This paper presents the framework for executing Cahn-Hilliard simulations through a web interface which is based on 

a popular continuous integration tool called Jenkins. This setup allows launching computations from any machine, in the 

client mode, and without the need to sustain a connection to the computational environment. It also isolates the researcher 

from the complexity of the underlying infrastructure and reduces the number of steps necessary to perform the simula-

tions. Moreover, the results of the computations are automatically post-processed and stored upon job completion for fu-

ture retrieval in the form of raw data, a sequence of bitmaps, as well as a video sequence illustrating changes in the mate-

rial structure over time. The Cahn-Hilliard equations are parameterized with mobility and chemical potential function, al-

lowing for several numerical applications. The discretization is performed with Isogeometric finite element method, and it 

is parameterized with the number of time steps, the time step size, the mesh size, and the order of the B-spline basis func-

tions using for the approximation of the solution. The interface is linked with the alternating direction semi-implicit solv-

er, resulting in a linear computational cost of the simulation. 
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1. INTRODUCTION 

In this paper, we present a general framework 

for executing Cahn-Hilliard simulation through a 

web interface. The Cahn-Hilliard equations have 

several applications in material science, including 

the gamma to alpha transformation in C-MN steel, 

as described by Mecozzi et al. (2005). We focus on a 

general setup for the phase-separation modeling with 

the Cahn-Hilliard equations with the parameters 

following Gomez et al. (2008), and Elliot (1989). 

The general conclusions concerning the computa-

tional costs remain valid if we switch to metal form-

ing related simulations. These simulations will re-

quire an update of the formulas for the mobility and 

chemical potential, following the ideas presented by 

Mecozzi et al. (2005). Our previous work concerned 

the application of iterative solvers to Cahn-Hilliard 

equations (Paszyński et al., 2018a), application of 

the refined Isogeometric analysis to C-H simulations 

(Paszyński et al., 2018b), as well as the development 

of the linearized time integration schemes (Schaefer 

et al., 2015).  
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2. CAHN-HILLIARD EQUATIONS 

The Cahn-Hilliard equation in its original form 

is: 

      Ω 0;
du

M u F u u in T
dt

      
 (1) 

defined over the square boundary Ω = [0,1]2, with 

periodic boundary conditions. 

Let us make the following observations regard-

ing equation (1): 

 Equation (1) describes the concentration of one 

phase into another phase. The variable u has the 

value close to 0 if the second phase is dominant, 

and the value close to 1 when the first phase is 

dominant.  

 The equation can model different phase-field phe-

nomena, depending on the definition of the mobil-

ity function M(u) and the chemical potential func-

tion F(u). Exemplary definition of the functions 

for the phase-field simulations following Gomez 

et al. (2008) are  

M(u) = u(1-u) and  
1

log 1 2
2 1

u
F u u

u

 
   

 
 

where θ is the ratio between the critical tempera-

ture, where two phases attain the same composi-

tion, and the absolute temperature. In order to 

make the phases separate, the θ parameter has to 

be greater than 1. In the exemplary simulation we 

use θ = 1.5, following Gomez et al. (2008). It is 

also possible to simulate a wide range of different 

physical phenomena, if the mobility and the 

chemical potential formulas are set to the corre-

sponding values (Gomez et al., 2008). 

 Equation (1) is the strong form of the Cahn-

Hilliard problem. It contains fourth order deriva-

tives (there is a divergence, a gradient and a La-

placian operator).  

 The weak form can be obtained by the multiplica-

tion with test functions and integration by parts 

  

      

, , v

, v        Ω 0;

du
v u M u

dt

M u F u v V in T

 
       

 

    

 (2) 

 where the brackets denote the L2 scalar product 

(integral of the multiplications of the components 

(u,v)= uvdx . Here, the Laplacian is multiplied by 

the gradient. Therefore, even after performing the 

integration by parts, there are second order weak 

derivatives in the corresponding weak form. 

 This means that the standard finite elements with 

Lagrange polynomials are not applicable, since 

they are C0 between finite elements and the sec-

ond derivatives do not exist. One way to over-

come this problem is to employ the Isogeometric 

Finite Element Method (Cottrel et al., 2009) with 

B-splines basis functions of order p, since they 

have the C(p-1) continuity between the finite ele-

ments. However, the cost of integration of the 

higher order B-splines basis functions is high 

(Woźniak, 2015). Furthermore, the cost of em-

ploying the direct solver algorithm is scaled by 

the factor of p3 (Garcia et al., 2016). These two 

properties translate into the overall computational 

cost of the direct solver O(N1.5p3), for two-

dimensional simulations. 

Following Gomez and Hughes (2011), it is pos-

sible to split the Cahn-Hilliard equations in their 

strong form into the system of second order equa-

tions by introducing the η(u) term: 

     

   

 Ω 0;
du

M u u in T
dt

u F u u





    

 

 (3) 

We can make the following observations re-

garding equation (3): 

 Eequation (3) describes the same physical process 

as equation (1), namely the concentration of one 

phase into another phase. The additional variable 

η has no physical meaning, it is an auxiliary scalar 

field that is defined as the potential function mi-

nus the Laplacian of the concentration.  

 This time however, in the first and in the second 

sub-equations of equation (3), there are only the 

second order derivatives in the strong form, name-

ly the scalar product of two gradients in the first 

one, and the Laplacian in the second one. 

 The integration by parts leads to the system of 

weak problems given by: 

      

      

, ,      Ω 0;

, ,      Ω 0;

du
v M u u v v V in T

dt

du
v M u u v v V in T

dt





 
     

 

 
     

 

 (4) 

where both the first and the second sub-problem is 

of the first order (it has only first order deriva-

tives). 

 This means that now we can utilize the Lagrange 

polynomials, that are C0 between the finite ele-

ments. We can also use higher order B-splines ba-
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sis functions which have the higher C(p-1) continui-

ty, but this time it is not obligatory. 

 Moreover, the system of equations (4) can be 

solved using the Alternating Direction solver 

(Puzyrev et al., 2019) that delivers a lower, linear 

O(Np3) computational cost. 

Following the ideas of Gomez and Hughes 

(2011) and Puzyrev et al. (2019) we can solve the 

Cahn-Hilliard equations using the Alternating Direc-

tion solver (Paszyński et al., 2018a). In order to 

make the solver fully utilize the numerical properties 

of the underlying algorithm and considerably reduce 

the length of computations, a number of hardware-

optimized numerical programming libraries, like 

Galois or Boost, had to be used. This in turn means 

that the process of running the simulations is differ-

ent depending on the execution environment (the 

libraries need to be compiled and installed), which 

makes it difficult to reproduce across multiple envi-

ronments. This work aims at automating this pro-

cess, which makes the solver more available. More-

over, horizontal scaling of the execution environ-

ment is often required for long-running computa-

tions, like the ones described, to be able to perform a 

number of them in parallel, on multiple machines, 

often by many scientists. The setup described can be 

scaled up and down to any number of nodes.  

3. INTERFACE 

Responding to the problems above, we set up a 

web interface used to provide secure access to the 

underlying computational cluster in a transparent 

way. We utilized a set of tools popular in software 

engineering - Jenkins, for the web interface, and 

Ansible for achieving reproducible infrastructure, 

useful also for scaling the cluster size based on the 

number of concurrent tasks.  

The Ansible scripts prepared as the part of the 

contribution of this paper are capable of replicating 

this computational environment onto any nodes 

(which meet certain criteria e.g. Debian-based oper-

ating system) by issuing one command. They set up 

a fully configured Jenkins cluster capable of running 

Cahn-Hilliard computational jobs. This setup allows 

launching the computations from any machine and 

without the need to sustain a connection to the com-

putational environment. Moreover, the results of the 

computations are automatically post-processed and 

stored upon job completion for future retrieval in the 

form of raw data, a sequence of bitmaps, as well as a 

video sequence illustrating changes in the material 

structure over time. The jobs, including the scripts 

used to post-process data can be made a part of the 

solver code repository and be under version control. 

This in turn makes the solver a complete and coher-

ent solution, which can be maintained, reviewed, 

automatically redeployed, tested and released. The 

solver is accessible through a web interface under 

the domain https://jenkins.a2s.agh.edu.pl/. Figure 1 

shows the main page of this web interface. 

There is one computational job available called 

cahn-hilliard. After clicking on the link, the user is 

redirected to the job details depicted in figure 2.  

On the bottom left-hand side corner there is the 

list of historic tasks presented along with their exe-

cution date and the status. The new computational 

job can be triggered by pressing the build with pa-

rameters button, available in the top left-hand side 

corner. On the following screen, shown in figure 3, 

there input fields which contain the available con-

figuration options. To run the computations de-

scribed in the chapter 4.1 of the article by Gomez 

and Hughes (2011),  we need to specify the mobility 

formula and the chemical potential formula. The 

first one should be set to: x(1-x), while the second 

to: 

1
log 1 2

2 1

x
x

x


 
  

   

We also need to provide the formula for the ini-

tial state. We do it by passing the contents of the 

function written in C programming language, which 

takes two arguments, x and y and returns the initial 

value in (x,y), to the corresponding text field. The 

default value corresponds to the plane with two cir-

cles situated in the top right (0.8,0.8) and the bottom 

left (0.2,0.2) corner of the plane, each 0.2 units in 

diameter. We may use any initial formulation we 

want, which may, but does not need to be (as this 

example demonstrates), a mathematical function. 

Then we select the size of the mesh (e.g. 50) and the 

time step delta (e.g. 0.000000001) as well as the 

time step count (e.g. 1000). Optionally, we can spec-

ify one or many e-mail addresses, in case we want to 

get a notification after the job is completed. After 

pressing the build button the user is redirected to the 

interactive computations log screen, shown in figure 

4. The results of each computational task are made 

available under resource 

https://jenkins.a2s.agh.edu.pl/pub/<task_identifier>. 

 

https://jenkins.a2s.agh.edu.pl/pub/%3ctask_identifier
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Fig. 1. The main screen of the solver web interface. 
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Fig. 2. Cahn-Hilliard job details. 
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Fig. 3. The computational task configuration screen. 
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Fig. 4. Computation log screen. 

The task identifier corresponds to the number of 

the job, for instance 135, in this example. The results 

are presented in a form of archives containing raw 

data, a set of pictures as well as a movie presenting 

change in the material structure over time. 

4. NUMERICAL MODELLING 

We validate the Cahn-Hilliard solver and the 

web interface it is accessible through using the ex-

ample of the simulations of the physical phenomena 

of the process of the merging of two droplets, fol-

lowing Gomez and Hughes (2011). Figure 5 con-

tains several frames of the visualization of the pro-

cess, obtained by performing the steps described in 

chapter 3 of this paper.  

The parameters used in this simulation are:  

 Mesh size: 5050 

 Order of B-splines: Quadratic 

 Number of time steps: 250,000 

 Initial time step size: 10-10 

 Mobility function: M(x) = 800x(1-x) (notice that 

interface takes variable x not u) 

 Chemical potential: F(c) = 4(c3 - 6c2 + 2c) 

 Initial configuration: two circles, one with the 

center in (0.35,0.35) and the radius 0.15, and one 

with the center (0.62,0.62) and the radius 0.2. 

 

 

 

 

 

5. CONCLUSIONS 

This paper presented a web-based interface to 

manage different numerical simulations of Cahn-

Hilliard equation. The interface allows to provide 

different definitions of the mobility and chemical 

potenation functions, to make it possible to run dif-

ferent kind of simulations. It also allows for auto-

matic compilation, linkage, execution and post-

processing of the numerical results.  
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Fig. 5. The process of merging of two droplets. 
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FRAMEWORK SŁUŻĄCY DO WYDAJNEJ 

SYMULACJI ZJAWISK FIZYCZNYCH W 

INŻYNIERII MATERIAŁOWEJ Z 

WYKORZYSTANIEM WZORÓW CAHNA-

HILLIARDA 

Streszczenie 

W niniejszej pracy przedstawiamy framework służący do prze-

prowadzania symulacji opartych o wzory Cahna-Hilliarda po-

przez wygodny interfejs webowy. Wykorzystujemy do tego 

popularne narzędzie służące do ciągłej integracji o nazwie Jen-

kins. Tego typu konfiguracja pozwala na uruchamianie obliczeń 

z dowolnej maszyny w trybie klienckim bez konieczności 

utrzymywania połączenia do środowiska obliczeniowego. Dzię-

ki temu naukowiec wykonujący obliczenia jest odizolowany od 

skomplikowanej infrastruktury obliczeniowej, a uruchomienie 

symulacji wymaga mniejszej liczby czynności. Ponadto, wyniki 

symulacji są automatycznie przetwarzane i prezentowane w 

formie tabularycznej, sekwencji bitmap oraz filmu, który od-

zwierciedla zmiany zachodzące w strukturze badanego materia-

łu w czasie. Równania Cahna-Hilliarda są parametryzowane 

poprzez funkcje mobilności i potencjału chemicznego, co po-

zwala na przeprowadzanie symulacji wybranych zjawisk dla 

wielu materiałów. Dyskretyzacja jest wykonywana z wykorzy-

staniem Izogeometrycznej Metody Elementów Skończonych i 

jest uzależniona od liczby i rozmiaru kroków czasowych, wiel-

kości siatki oraz rzędu krzywych B-sklejanych, użytych do 

aproksymacji rozwiązania. Interfejs, o którym mowa, konfiguru-

je solwer zmienno-kierunkowy z dyskretyzacją czasową sche-

matem wprost, co skutkuje liniowym kosztem obliczeniowym 

symulacji. 
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