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Abstract

The well-known Nonnegative Matrix Factorization (NMF) method can be provided with

more flexibility by generalizing the non-normalized Kullback-Leibler divergence to α-

divergences. However, the resulting α-NMF method can only achieve mediocre sparsity

for the factorizing matrices. We have earlier proposed a variant of NMF, called Projective

NMF (PNMF) that has been shown to have superior sparsity over standard NMF. Here

we propose to incorporate both merits of α-NMF and PNMF. Our α-PNMF method can

produce a much sparser factorizing matrix, which is desired in many scenarios. Theo-

retically, we provide a rigorous convergence proof that the iterative updates of α-PNMF

monotonically decrease the α-divergence between the input matrix and its approximate.

Empirically, the advantages of α-PNMF are verified in two application scenarios: (1) it

is able to learn highly sparse and localized part-based representations of facial images;

(2) it outperforms α-NMF and PNMF for clustering in terms of higher purity and smaller

entropy.
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project Finnish Center of Excellence in Adaptive In-
formatics Research.

1 Introduction

Nonnegative learning based on matrix factor-

ization has received a lot of research attention re-

cently. After Lee and Seung [11, 12] presented

their Nonnegative Matrix Factorization (NMF) al-

gorithms, a multitude of NMF variants have been

proposed and applied to many areas such as sig-

nal processing, data mining, pattern recognition and

gene expression studies [3, 5, 6, 9, 14, 21]. NMF

is not only applicable to the feature axis for finding

sparse and part-based representations (e.g.[10, 13]),

but also to the sample axis, e.g. for finding clusters

of data items (e.g. [8, 7, 19]).

The original NMF algorithm minimizes one of

two kinds of difference measure between the data

matrix and its approximate: the least square error

or the non-normalized Kullback-Leibler divergence

(or I-divergence). When the latter is used, NMF ac-

tually maximizes the Poisson likelihood of the ob-

served data [11]. It was recently pointed out that the

divergence minimization can be generalized by us-

ing the α-divergence [1], which leads to a family of

new algorithms [4, 23]. The convergence proof of

NMF with α-divergence is given in [4]. The empir-

ical study by Cichocki et al. shows that the general-

ized NMF can achieve better performance by using

suitable α values.

Projective Nonnegative Matrix Factorization
(PNMF) [22] is another variant of NMF. It identi-

fies a nonnegative subspace by integrating the non-

negativity to the PCA objective. PNMF has proven

to outperform NMF in feature extraction, where

PNMF is able to generate sparser patterns which are

more localized and non-overlapping [22]. Cluster-

ing results of text data also demonstrate that PNMF

is advantageous as it provides better approximation
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to the binary-valued multi-cluster indicators than

NMF [19].

In this paper we combine the above two

techniques by using α-divergence instead of I-

divergence as the error measure in PNMF. We pro-

vide a multiplicative optimization algorithm which

is theoretically convergent. Experiments are con-

ducted, in which the new algorithm is shown to out-

perform α-NMF for feature extraction and cluster-

ing on a variety of datasets.

Part of the work can be found in our prelimi-

nary paper [18]. As an extension, we propose here

a novel multiplicative update rule which monoton-

ically decreases the α-divergence between the data

matrix and its approximate, without additional nor-

malization or stabilization steps. The new algorithm

is more desirable because it makes the objectives at

different iterations and with different initial guesses

comparable. The proof uses a novel convex func-

tion for α-divergence which has not been used in

the previous literature on divergence measures. We

also provide the multiplicative update rule for the

special case α → 0, which completes these algo-

rithms for the entire family of α-divergences.

The rest of the paper is organized as follows.

We first briefly review the NMF and PNMF meth-

ods in Section 2. In Section 3, we present the α-

PNMF objective, its multiplicative optimization al-

gorithm and convergence proof. The experiments

are presented in Section 4, and Section 5 concludes

the paper.

2 Related Work

2.1 Nonnegative Matrix Factorization

Given a nonnegative data matrix X ∈ R
m×N
+ ,

Nonnegative Matrix Factorization (NMF) seeks an

approximative decomposition of X that is of the

form:

X≈WH, (1)

where W ∈ R
m×r
+ and H ∈ R

r×N
+ with the rank

r�min(m,N).

Denote by X̂ = WH the approximating ma-

trix. The approximation can be achieved by min-

imizing two widely used measures: (1) the least

square criterion ε = ∑i, j

(
Xi j− X̂i j

)2

and (2) the

non-normalized Kullback-Leibler divergence (or I-

divergence)

DI

(
X||X̂

)
=∑

i, j

(
Xi j log

Xi j

X̂i j
−Xi j + X̂i j

)
. (2)

In this paper we focus on the second approximation

criterion, which leads to the multiplicative updating

rules of the form

Hnew
k j =Hk j

(
WT Z

)
k j

∑iWik
, (3)

W new
ik =Wik

(
ZHT

)
ik

∑ j Hk j
, (4)

where we use Zi j = Xi j/X̂i j for notational brevity.

2.2 Nonnegative Matrix Factorization with
α-divergence

The α-divergence [1] is a parametric family

of divergence functionals, including several well-

known divergence measures as special cases. NMF

equipped with the following α-divergence as the ap-

proximation measure was introduced by Cichocki et
al and called α-NMF [4]:

Dα
(

X||X̂
)
=
∑i j

(
αXi j +(1−α)X̂i j−Xαi j X̂

1−α
i j

)
α(1−α)

(5)

The corresponding multiplicative update rules

are given by the following, where we define Z̃i j =
Zαi j:

Hnew
k j =Hk j

⎡⎢⎣
(

WT Z̃
)

k j

∑iWik

⎤⎥⎦
1
α

, (6)

W new
ik =Wik

⎡⎣
(

Z̃HT
)

ik

∑ j Hk j

⎤⎦
1
α

. (7)

α-NMF reduces to the conventional NMF with

I-divergence when α → 1. Another choice of α
characterizes a different learning principle, in the

sense that the model distribution is more inclusive

(α→ ∞) or more exclusive (α→−∞). Such flex-

ibility enables α-NMF to outperform NMF with α
properly selected.
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2.3 Projective Nonnegative Matrix Factor-
ization

Replacing H = WT X in (1), we get the Projec-
tive Nonnegative Matrix Factorization (PNMF) ap-

proximation scheme [22]

X≈WWT X. (8)

Denote X̂ = WWT X the approximating matrix,

Zi j = Xi j/X̂i j, and 1m a column vector of length m
and filled with ones. The PNMF multiplicative up-

date rule for I-divergence is given by [22]

W ′
ik =Wik

(AW)ik
(BW)ik

(9)

where A = ZXT +XZT and B = 1m1T
n XT +X1n1T

m.

In practice, iterations with only the update rule

(9) are sensitive to the initial guess of W and often

have a very zigzag learning path, where the over-

all scaling of W fluctuates between odd and even

iterations. This is overcome in practice by using an

additional normalization step [22]

Wnew =
W′

‖W′‖ (10)

or a stabilization step [19]

Wnew = W′
√

∑i j Xi j

∑i j
(
W′W′T X

)
i j

. (11)

The name PNMF comes from another deriva-

tion of the approximation scheme (8) where a pro-

jection matrix P in X≈PX is factorized into WWT .

This interpretation connects PNMF with the classi-

cal Principal Component Analysis subspace method

except for the nonnegativity constraint [22]. Com-

pared with NMF, PNMF is able to learn a much

sparser matrix W [19, 22, 23]. This property is es-

pecially desired for extracting part-based represen-

tations of data samples or finding cluster indicators.

3 PNMF with α-divergence

In this section, we combine the flexibility of α-

NMF and the sparsity of PNMF into a single algo-

rithm. We call the resulting method α-PNMF which

stands for Projective Nonnegative Matrix Factoriza-

tion with α-divergence.

3.1 Multiplicative Update Rule

α-PNMF solves the following optimization

problem:

minimize
W≥0

J (W) = Dα(X||WWT X). (12)

The gradient of the objective with respect to W is

given by

∂J (W)

∂Wik
=

1

α

[
−
(

ÃW
)

ik
+(BW)ik

]
,

where Z̃i j = Zαi j, Ã = Z̃XT +XZ̃T and again B =

1m1T
n XT +X1n1T

m.

Denote Λik the Lagrangian multipliers associ-

ated with the constraint Wik ≥ 0. The Karush-Kuhn-

Tucker (KKT) conditions require

∂J (W)

∂Wik
= Λik (13)

and ΛikWik = 0 which indicates ΛikW 2α
ik = 0. Mul-

tiplying both sides of (13) by W 2α
ik leads to

∂J (W)
∂Wik

W 2α
ik = 0. This suggests a multiplicative up-

date rule:

W new
ik =Wik

⎡⎣
(

ÃW
)

ik
(BW)ik

⎤⎦
1

2α

. (14)

for all α 	= 0. For the special case α= 0, the update

rule is given by

W new
ik =Wik exp

⎛⎝1

2

(
Ã(0)W

)
ik

(BW)ik

⎞⎠ , (15)

where Z̃(0)
i j = logZi j and Ã(0) = Z̃(0)XT +XZ̃(0)T .

3.2 Convergence Proof

In this Section, we prove that iteratively apply-

ing (14) or (15) monotonically decreases the objec-

tive function Dα(X||WWT X).

The convergence of NMF and most of its vari-

ants, including α-NMF, to a local minimum of the

cost function is analyzed by using an auxiliary func-

tion as its tight upper-bound. This is achieved in

α-NMF [4] by using the Jensen inequality based on

the convex function

h(z) =
α+(1−α)z− z1−α

α(1−α) . (16)



10 Z. Yang and E. Oja

This convex function is however not applicable to

the α-PNMF case because it is not decomposable,

i.e. not fulfilling h(xy)∝ h(x)h(y) or h(xy) = h(x)+
h(y)+ constant.

Here we overcome this problem by using a

novel convex function

g(x,y) =− xαy1−α

α(1−α) . (17)

We further introduce

f (y) = g(Xi j,y) (18)

for notational brevity. Notice that f (y) is convex

with respect to y,

f (by) =b1−α f (y), (19)

f (yz) =− α(1−α)
Xαi j

f (y) f (z). (20)

Let W be the current estimate, X̂ = W̃W̃T X,

and

γi jk =
Wik

(
WT X

)
k j

∑l Wil (WT X)l j
=

Wik
(
WT X

)
k j

(WWT X)i j
, (21)

βa jk =
WakXa j

∑bWbkXb j
=

WakXa j

(WT X)k j
, (22)

Ṽ≡Ṽ(W̃,W), Ṽik = W̃ 1−α
ik Wα

ik (23)

Si j =− 1

α(1−α) Z̃T X (24)

Obviously, γi jk ≥ 0, ∑k γi jk = 1, βa jk ≥ 0, ∑aβa jk =

1, V≡ Ṽ(W,W), and Vik =Wik.

In the derivation below we also employ the fol-

lowing inequality for any symmetric real matrix M
independent of W̃ [8]:

1

2
Tr
(

W̃T MW̃
)
≤∑

ik

W̃ 2
ik

2Wik
(MW)ik , (25)

where the equality holds if and only if W̃ = W.

We can then apply the Jensen inequality twice

to obtain the upper bound of J1(W̃)≡−∑i j
Xαi j X̂

1−α
i j

α(1−α)
by G1 (see Figure 1).

The gradient of G1 with respect to Wik using the

chain rule is:

∂G1

∂W̃ik
=∑

al

∂G1

∂Val

∂Val

∂W̃ik
=
∂G1

∂Vik

∂Vik

∂W̃ik
(37)

=− 1

α

(
Wik

W̃ik

)2α−1(
ÃW

)
ik

(38)

Recall B = 1m1T
n XT +X1n1T

m. We have

J2(W̃)≡∑
i j

1

α

(
W̃W̃T X

)
i j

(39)

=
1

2α
Tr
[
W̃T BW̃

]
(40)

≤ 1

α∑ik
W̃ 2

ik
2Wik

(BW)ik ≡ G2(W̃,W) (41)

Therefore,

J (W̃) =∑
i j

Xi j

1−α + J1(W̃)+ J2(W̃) (42)

≤∑
i j

Xi j

1−α +G1(W̃,W)+G2(W̃,W) (43)

≡G(W̃,W) (44)

Minimization over W̃ is implemented by setting
∂G
∂W̃ik

= 0:

− 1

α

(
Wik

W̃ik

)2α−1(
ÃW

)
ik
+

1

α
W̃ik

Wik
(BW)ik = 0.

(45)

The factor 1/α cancels when α 	= 0, which leads to

the update rule (14). When α→ 0, we can apply

L’Hôpital’s rule to the both sides of (45) and obtain

W̃ik

Wik

[
2log

(
W̃ik

Wik

)
(BW)ik−

(
Ã(0)W

)
ik

]
= 0.

(46)

Notice that the sequence of Wik remains positive

given a positive initialization. Thus we can safely

remove the factor Wik/W̃ik, resulting the update rule

(15) for α→ 0 or the inverse I-divergence. In sum-

mary,

J (Wnew) =G(Wnew,Wnew) (47)

≤G(Wnew,W) (48)

≤G(W,W) = J (W), (49)

where the first inequality comes from the upper

bound and the second by the minimization. Itera-

tively applying (14) thus monotonically decreases

Dα(X||WWT X). �
Remark 1:

Theoretically, convergent update rules for

PNMF based on the non-normalized KL-divergence
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J1(W̃)≡∑
i j
− Xαi j X̂

1−α
i j

α(1−α) =∑i j
g
(

Xi j, X̂i j

)
=∑

i j
f
(

X̂i j

)
(26)

=∑
i j

f

(
∑
k

W̃ik

(
W̃T X

)
k j

)
=∑

i j
f

⎛⎜⎝∑
k
γi jk

W̃ik

(
W̃T X

)
k j

γi jk

⎞⎟⎠ (27)

≤∑
i j
∑
k
γi jk f

⎛⎜⎝W̃ik

(
W̃T X

)
k j

γi jk

⎞⎟⎠=∑
i j
∑
k
γi jk f

(
Wik

γi jk

W̃ik

Wik

(
W̃T X

)
k j

)
(28)

=−∑
i j
∑
k
γi jk
α(1−α)

Xαi j

[
Wik

γi jk

]1−α
f

(
W̃ik

Wik

)
f
((

W̃T X
)

k j

)
(29)

=−∑
i j
∑
k
γi jk
α(1−α)

Xαi j

[
Wik

γi jk

]1−α
f

(
W̃ik

Wik

)
f

(
βa jk

∑aW̃akXa j

βa jk

)
(30)

≤−∑
i j
∑
k
γi jk
α(1−α)

Xαi j

[
Wik

γi jk

]1−α
f

(
W̃ik

Wik

)
∑
a
βa jk f

(
W̃akXa j

βa jk

)
(31)

=−∑
i jak
γi jk
α(1−α)

Xαi j

[
Wik

γi jk

]1−α
f

(
W̃ik

Wik

)
βa jk f

(
Wak

βa jk

W̃ak

Wak
Xa j

)
(32)

=∑
i jak
γi jkβa jk

[
α(1−α)

Xαi j

]2[
WikWak

γi jkβa jk

]1−α
f (Xa j) f

(
W̃ik

Wik

)
f

(
W̃ak

Wak

)
(33)

=∑
aik

[
W̃ 1−α

ik Wα
ik

][
W̃ 1−α

ak Wα
ak

][
− 1

α(1−α)∑j
Zαi jXa j

]
(34)

=∑
aik

VikVakSai = Tr
(

ṼT SṼ
)
=

1

2
Tr
[
ṼT (S+ST ) Ṽ

]
(35)

≤− 1

α(1−α)∑ik
Ṽ 2

ik
2Vik

(
ÃV

)
ik
≡ G1(Ṽ,V). (36)

Figure 1. Upper-bounding J1(W̃)≡−∑i j
Xαi j X̂

1−α
i j

α(1−α) .
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are unresolved in the previous PNMF literature

[19, 22, 23]. This is now given by our proof as a

special case (α→ 1):

W new
ik =Wik

√
(ZXT W+XZT W)ik

∑ j (WT X)k j +
(
∑ j Xi j

)
(∑bWbk)

.

(50)

Remark 2:

We have previouly proposed an algorithm that

iterates the following two steps [18]:

W ′
ik =Wik

⎡⎣
(

ÃW
)

ik
(BW)ik

⎤⎦
1
α

, (51)

W new
ik =W ′

ik

(
∑i j X̂i jZ̃i j

∑i j X̂i j

) 1
2α

(52)

The update rule (51) is obtained by turning α-

PNMF into a constrained α-NMF with H = WT X.

It guarantees the Lagrangian objective decreases in

each iteration. However, the definition of such a

function varies across different iterations and also

across different starting values because the La-

grangian multipliers solved by the K.K.T. condi-

tions are determined by the current W. The result-

ing objectives are therefore not comparable, which

hinders monitoring its convergence and prevents

improvement by multiple runs using different initial

guesses. By constrast, the update rule (14) assures

the monotonic decrease of the original α-PNMF ob-

jective whose definition does not depend on the it-

erations and starting W values. Therefore, one may

easily monitor the convergence, rerun the algorithm

several times and select the solution with the best

objective.

The new multiplicative algorithm also over-

comes another shortcoming of the previous one.

The update rule (51) is sensitive to the overall

scaling of W and results in zigzag learning paths.

Therefore it must be accompanied with a stabiliza-

tion step (52) with re-calculated X̂ and Z̃. However,

the proof of the consistence of this additional up-

date rule with the original objective Dα(WWT X) is

still lacking. In contrast, the new algorithm using

(14) does not require any additional normalization

or stabilization steps, which facilitates its theoreti-

cal analysis.

4 Experiments

Suppose the nonnegative matrix X ∈ R
m×N
+ is

composed of N data samples x j ∈R
m
+, j = 1, . . . ,N.

Basically, α-PNMF can be applied on this matrix

in two different ways. Firstly, one employs the

approximation scheme X ≈ WWT X and performs

feature extraction by projecting each sample into

a nonnegative subspace. The second approach ap-

proximates the transposed matrix XT by WWT XT

where W ∈ R
N×r
+ , where α-PNMF can be used for

clustering, with the elements of W now indicating

the membership of each sample in the r clusters. We

conduct benchmark experiments on both cases.

4.1 Feature Extraction

We have used the FERET database of facial im-

ages [15] as the training data set. After the face

segmentation, 2,409 frontal images (poses “fa” and

“fb”) of 867 subjects were stored in the database for

the experiments. All face boxes were normalized

to the size of 32×32 and then reshaped to a 1024-

dimensional vector by column-wise concatenation.

Thus we obtained a 1024× 2409 nonnegative data

matrix, whose elements are re-scaled into the region

[0,1] by dividing with their maximum. For good vi-

sualization, we empirically set r = 25 in the feature

extraction experiments.

After training, the basis vectors are stored in the

columns of W in α-NMF and α-PNMF. The ba-

sis vectors have same dimensionality with the im-

age samples and thus can be visualized as basis im-
ages. In order to encode the features of different

facial parts, it is expected to find some localized

and non-overlapping patterns in the basis images.

The resulting basis images using α= 0.5 (Hellinger

divergence), α = 1 (I-divergence) and α = 2 (χ2-

divergence) are shown in Figure 2. Both methods

can identify some facial parts such as eyebrows and

lips. In comparison, α-PNMF is able to generate

much sparser basis images with more part-based vi-

sual patterns.

Notice that two non-negative vectors are or-

thogonal if and only if they do not have the same

non-zero dimensions. Therefore we can quantify

the sparsity of the basis vectors by measuring their

orthogonalities with the τ measurement [20]:

τ= 1− ‖R− I‖F

(r(r−1))
, (53)
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where ‖ · ‖F is the Frobenius matrix norm and the

element Rst of matrix Rgives the normalized inner

product between two basis vectors ws and wt :

Rst =
wT

s wt

‖ws‖‖wt‖ . (54)

Larger τ’s indicate higher orthogonality and τ
reaches 1 when the columns of W are completely

orthogonal. The numerical values for the orthogo-

nalities τ using the two compared methods are given

under the respective basis image plots in Figure

2. All τ values in the right are considerably larger

than their left counterparts, which confirms that α-

PNMF is able to extract a sparser transformation

matrix W.

4.2 Clustering

We have used a variety of datasets, most of

which are frequently used in machine learning and

information retrieval research. Table 1 summarizes

the characteristics of the datasets. The descriptions

of these datasets are as follows:

– Iris, Ecoli5, WDBC, and Pima, which are taken

from the UCI data repository with respective

datasets Iris, Ecoli, Breast Cancer Wisconsin

(Prognostic), and Pima Indians Diabetes. The

Ecoli5 dataset contains only samples of the five

largest classes in the original Ecoli database.

– AMLALL gene expression database [2]. This

dataset contains acute lymphoblastic leukemia

(ALL) that has B and T cell subtypes, and acute

myelogenous leukemia (AML) that occurs more

commonly in adults than in children. The data

matrix consists of 38 bone marrow samples (19

ALL-B, 8 ALL-T and 11 AML) with 5000 genes

as their dimensions.

– ORL database of facial images [16]. There are

ten different images of each of 40 distinct sub-

jects. For some subjects, the images were taken

at different times, varying the lighting, facial ex-

pressions and facial details. In our experiments,

we down-sampled the images to size 46×56 and

rescaled the gray-scale values to [0,1].

The number of clusters r is generally set to the

number of classes. This work focuses on cases

where r > 2, as there exist closed form approxima-

tions for the two-way clustering solution (see e.g.

[17]). We thus set r equal to five times the number

of classes for WDBC and Pima.

Suppose there is ground truth data that labels

the samples by one of q classes. We have used the

purity and entropy measures to quantify the perfor-

mance of the compared clustering algorithms:

purity =
1

N

r

∑
k=1

max
1≤l≤q

nl
k, (55)

entropy =− 1

n log2 q

r

∑
k=1

q

∑
l=1

nl
k log2

nl
k

nk
, (56)

where nl
k is the number of samples in the cluster k

that belong to original class l and nk = ∑l nl
k. A

larger purity value and a smaller entropy indicate

better clustering performance.

The resulting purities and entropies are shown

in Table 2, respectively. α-PNMF performs the

best for all selected datasets. Recall that when

α = 1 the proposed method reduces to PNMF and

thus returns results identical to the latter. Never-

theless, α-PNMF can outperform PNMF by adjust-

ing the α value. When α = 0.5, the new method

achieves the highest purity and lowest entropy for

the gene expression dataset AMLALL. For the other

five datasets, one can set α = 2 and obtain the best

clustering result using α-PNMF. In addition, one

can see that Nonnegative Matrix Factorization with

α-divergence works poorly in our clustering exper-

iments, much worse than the other methods. This

is probably because α-NMF has to estimate many

more parameters than those using projective factor-

ization. α-NMF is therefore prone to falling into

bad local optima.

5 Conclusions

We have presented a new variant of NMF by

introducing the α-divergence into the PNMF algo-

rithm. Our α-PNMF algorithm theoretically con-

verges to a local minimum of the cost function. The

resulting factor matrix is of high sparsity or orthog-

onality, which is desired for part-based feature ex-

traction and data clustering. Experimental results

with various datasets indicate that the proposed al-

gorithm can be considered as a promising replace-

ment for both α-NMF and PNMF.
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α= 0.5, τ=0.77 α= 0.5, τ=0.99

α= 1, τ=0.75 α= 1, τ=0.99

α= 2, τ=0.75 α= 2, τ=0.92

Figure 2. The basis images of (left) α-NMF and (right) α-PNMF.
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Table 1. Dataset descriptions

datasets #samples #dimensions #classes r
Iris 150 4 3 3

Ecoli5 327 7 5 5

WDBC 569 30 2 10

Pima 768 8 2 10

AMLALL 38 5000 3 3

ORL 400 2576 40 40

Table 2. Clustering (a) purities and (b) entropies using α-NMF, PNMF and α-PNMF. The best result for

each dataset is highlighted with boldface font.
(a)

α-NMF PNMF α-PNMF

datasets α= 0.5 α= 1 α= 2 - α= 0.5 α= 1 α= 2

Iris 0.83 0.85 0.84 0.95 0.95 0.95 0.97
Ecoli5 0.62 0.65 0.67 0.72 0.72 0.72 0.73
WDBC 0.70 0.70 0.72 0.87 0.86 0.87 0.88
Pima 0.65 0.65 0.65 0.65 0.67 0.65 0.67

AMLALL 0.95 0.92 0.92 0.95 0.97 0.95 0.92

ORL 0.47 0.47 0.47 0.75 0.76 0.75 0.80

(b)
α-NMF PNMF α-PNMF

datasets α= 0.5 α= 1 α= 2 - α= 0.5 α= 1 α= 2

Iris 0.34 0.33 0.33 0.15 0.15 0.15 0.12
Ecoli5 0.46 0.58 0.50 0.40 0.40 0.40 0.40
WDBC 0.39 0.38 0.37 0.16 0.17 0.16 0.14
Pima 0.92 0.90 0.90 0.91 0.90 0.91 0.89

AMLALL 0.16 0.21 0.21 0.16 0.08 0.16 0.21

ORL 0.35 0.34 0.35 0.14 0.14 0.14 0.12
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