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CONTROL OF TOOL TEMPERATURE USING NEURAL NETWORK FOR MACHINING
MATERIALSWITH LOW THERMAL CONDUCTIVITY

Recently titanium and nickel alloys have becomeegménent for aeronautic and astronautic parts. esthese
cutting and becomes severely demaged. It is impbita control cutting tool temperature. In this pgpthe
control system of tool tip temperature using ineeamalysis of neural network for machining thesdenias

was developed and evaluated. The neural networkeleet cutting conditions and tool temperature weslyi

created by a set of teaching data. Then, a matieahatodel using algebra was developed. Cuttingdpeas
selected as parameter to be controlled in redutbog temperature. The relationship between thenmyoti

cutting speed and cutting time was calculated withinverse analysis of neural network by pre-negdif NC

program before cutting. The tool temperature cambétained at the desired value. The developettisyss
evaluated by the expaeriments using the turningge® and workpiece of Ti6Al4V. From the resultsisit
concluded that; (1) Tool tip temperature can betrotled by using the proposed inverse analysishefrieural
network, (2) CThe cutting tool life can be mainginby this method, for cutting materials with loetmal

conductivity.

1. INTRODUCTION

Recently, Titanium alloys and Nickel alloys havectime pre-eminent for making
aeronautic and astronautic parts. The cutting t@oigies for these materials are also being
urgently revealef4],[10]. Thermal conductivities of these materiale very low and thus,
tool temperature becomes very high and the toehgth is reduced. Many investigations to
solve this problem have been done by using cutiiethods with smaller depth of cut, high
speed cutting processiiifj] and water evaporation method by supplying watside the
cutting tool for dry grinding proceg5]. However, these methods could not successfully
achieve efficient cutting of those low thermal coativity materials. Therefore, in this
research, a tool tip temperature control systemgusi neural network for cutting low
thermal conductivity materials is developed andaitad.
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The cutting condition is pre-read from the NC peogrand tool tip temperature is
predicted by inverse analysis method using develogairal network. Then, the calculation
for optimum cutting speed at which tool tip tempera can be maintained below maximum
allowable limit (tool failure temperature) is cadliout. After that, NC program is corrected

using this new optimum cutting speed for improven@mproductivity through improving
of tool life.

2. THE ALGORITHM OF THE METHOD

The algorithm of the proposed method is shown m Ei The steps are, (1) Firstly,
tool tip temperature values for cutting low therncainductivity material Ti6AI4V with
various cutting conditions are calculated by FENhitE Element Method). And then, the
neural network is created by using these valueteashing data. (2) Using this neural
network, the algebraic relation between tool timperature and cutting speed is derived
(Inverse Analysis Model). (3) By comparing calcatht tool tip temperatures and
experimental results, the inverse analysis mod#lbei updated by adjusting a correction
coefficient, known as the “Custom-made coefficierf) The optimum cutting speed for
maintaining maximum allowable tool tip temperatuse calculated using the newly

developed inverse analysis model.

Neuralnetwork between the tool temperature and cuttimgliton is
built up by using only FEM thermal simulation résul

J

(Then the inverse analysis model using the neutabrieis built ua
1 | Then, relationship between tool tip temperaurd cutting speed c

be described by algebraic formula.
. J

v

Kl'he inverse analysis model is renovated for Icex;hlimdividu:@
machine toolsby using experimental data cutting with indivic
machines. Coefficient used for renovation is cafl@dstom-made
\coefﬁcient".

)

/Optimum cutting speed for the maximum aIIowalaimperature)

tool is calculated by the renovated inverse argalygidel. Then t
optimum cutting speed for each cutting steps @ulze using the pre
read data from NC program.

/

END

Fig. 1. Flowchart of algorithm regarding the propdsnethod
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3. THE STRUCTURE OF INVERSE ANALYSIS MODEL OF NEURANETWORK
AND THE CALCULATION OF OPTIMUM CUTTING SPEED

3.1. THE ILLUSTRATION OF THE OBJECT CUTTING PROCESS

Fig. 2 shows the illustration of work-piece andlttp temperature curve along cutting

tool path. The work piece is a cylindrical

shapéhwvgroove at the end of tool path so that to

obtain exact cutting length on the cylindrical fatbe cutting steps are defined at end face
and cylindrical face with rough, medium and finmltting as shown in tool path of Fig. 2.
The cutting processes will be done continuouslychgnging work-pieces until the tool

temperature reaches steady state.
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Fig. 2. Schematic view of the relationship betwtencutting time and the temperature of the tool
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3.2. THE STRUCTURE OF NEURAL NETWORK MODEL

The cutting heat conducts into cutting tool frore tiake face and the flank face. The
amount of heat entering into the tool will be lafge those materials with higher cutting
resistance, low thermal conductivity, higher fioctal coefficient between chip and tool.
The heat transfer rate at the place near tool ilidoe larger due to large air blowing caused
by workpiece and chuck. But, it will be smaller doeess air blowing with barrier of tool
post, around tool holder. Heat transfer coefficisntalso largely different for the cases
of dry cutting and wet cutting. However, this effexvery small for high speed cutting due
to extremely fast changing of tool temperature.

Fig. 3 shows the structure of neural network lay&rgs model is using typical three
layers structur¢6], input layer, hidden layer and output layergi8oid function in middle
layer and linear function in output layer are usespectively. The input factors are (1) tool
tip temperaturd,,.; at time stef,,., for time intervaldt before the interesting time step,

(2) cutting condition (cutting deptth feed speed, cutting speed/ and cutting time, for
each step of cutting, (3) time intervétl, (4) average heat transfer coefficien{,e, (5) the
theoretical cutting heat ener@y calculated from the thermal properties of workpiemd
tool, using cutting theorfr]. The output layer factors are the tool tip tergiure gradient
AT, between time step,., andt .. The tool tip temperaturé,, at time steg ,,, can be
calculated by using equation (1) with this outpgultAT,,..

Tm = ATm’At + Tm_]_ (l)
m=123 - < 10

Input layel Hidden laye Output laye
W (1=j=18 Vi &=1)

Input data ( e ‘{
1. |Temp. on top of tool at 1 T ‘ > AT 1
: Temp. gradient

Cutting depth d of tool tip atty, ;

) Feed speed
" |Cutting speed \Y; <

Cutting time for each step te — , Yk : Offset
3. [Time interval4t =t.+10 At i » Vik - Weight
4. |Average heat transfer coefficient apne ‘
5. |Heat source Q

()

Fig. 3. Neural network model between the cuttingdition and the temperature information of tool
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In the calculation, the time intervakt is taken 1/10 the time of each cutting step
Taking the larger number of time steps could obtaore accurate convergence for neural
network. However, this will take long time for calation and thus, only 10 steps
of intervals are used in this method. In the nemetlvork training, it is observed that
computing out the temperature gradigft, in output layer and substituting it in equation
(1), could obtain more accurate convergence witallemvalue of error compare with direct
calculation of tool tip temperatui&g, in output layer.

The neural network training is done in order taséatthat the sum of the squares
of the differences between teaching data and owdpt# to be smallest by using steepest
descent method. The weight valugg Vj. and offset valueg;, y« are acquired using
successive correction method inside the programe,Ng; is weight between input layer
and hidden layelj, is weight between hidden layer and output laggs, offset for hidden
layer andyy is offset for output layer. Back propagation meths used here. The error
functionE, for learning pattern p is shown in equation (2).

1
Es 52 [ip— Dig)’ 2)

Here,Try, is the teaching data for unit k which is relatbogthe learning pattern p, am,
is output data for unit k which is relating therl@ag pattern p.

3.3. CONSTRUCTION OF TEACHING DATA USING FEM AND TRNING PROCESS

The teaching data for construction of neural nekwsrsimply acquired by calculation
using FEM thermal analysis. The FEM model usednalysis is shown in Fig. 4, and
Ti6AI4V is selected as workpiece. The heat entearagn on the tool is determined using the
cutting conditions in Table 1. The amount of heateang is calculated from the cutting
condition and thermal properties of workpiece andl tusing cutting theory7]. The
variations of heat transfer coefficient for air aritlat the related places are shown in Fig. 5.
In FEM analysis, heat transfer coefficient used doy cutting is calculated by using the
measured values of airflow velocity at the plageR? and R around the tool as shown in
Fig. 5, and the dynamic viscosity of air af@OFor wet cutting, it is calculated using flow

velocity of cutting oil on the tool surface,Ror flow rate I~16¢/min of cutting oil and the

dynamic viscosity of cutting oil.

The input data to the neural network are spindleedp diameter of workpiece,
distance of tool from chuck, and the output datalaat transfer coefficient at surfaces P
P, and R. Cutting time periods are taken for cutting of bugh cutting, (II) medium
cutting and (Ill) finish cutting for end face anglindrical face as shown in Fig. 2. The
calculation is taken till the tool tip temperatueaches the steady state condition. In the
simulation, cutting speed, feed speedl cutting depthld and magnification facta€ for heat
transfer rate are taken as parameters. Then, gie thata set are defined for the conditions
where tool tip temperature would become high, nadaid low values. By altering only one
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parameter (Each change element in Table 1,) fractitting conditiorV, f, d, m, it can be
covered for representing the whole range of baaia det. There becomes altogether 54 set
of analysis data, included for dry and wet cutfomgcesses. The neural network training is
done using these data and tool tip temperaturaegrad , at each time intervait for each
cutting steps and air cutting intervals along {oath as teaching data.

After training the neural network with 54 set oftalathe error valu&, become small

enough 6.%10% at 58" time. Therefore, this developed neural networdssible to use as
temperature controlling tool.

Table 1. Data set of FEM analysis for teaching data

Heat source(Cutting conditions for calculationuifiog heat) and Data sets
Tool tip temp. High [ \/iCC/C  m— Low
Basic Each Basic Each Basic
condition | Each change elemerjt change | condition | change | Each change element condition
element element
Cutting speet E E
mmrmin 100 [65] 5 [30] [100] 65 [30] [100] 5 [65] 30
IRough | 05 | [03§ | [02 | [ 08 | 035] | op| [ g5:i [ 05 0.2
Feed speeiy ridle | 0.4 03 ' |02 0. 03 0. o4 03 02
fmm/rev PR Pt PRI N L fl--d-- 2 ]-- S I JEPRON Rt IR R
I Finish 03 1023 ¢ | 02 | o. 025 | o2 | d3: [ o5 0.2
Cuting [IRough | 20 | 118 i r10) | r20 | 15| | 1p | [ 2oi | @A5] 10
depth |Il Middle 10 | |o7g i |os | | 10 075 | | o5 | | 4o | 0i75 0.5
dmm | Finish 05 03] | |01 0. 03 0. os: | o3 01
MagnificationC | :
o 1 (U [o] 1 4] o 1
Total condition sets 54 ={Basic condition 1+Each change element |} ¥§ High, Middle, Low ; 3}x{ Dry, Wet; 2}
P1 P2 P3 P4
Dry Fig. 4. (a) Fig. 4. (b) Fig.- 4. (c)) —
Wet (1@/min) — Fig. 4. (b) Fig. 4. (c)| Fig. 4. (d)

Heat generating ar

: Tungaloy toc
Holder : PCLNR202(
Insert : CNGG120408!

No. of nodr  : 4607¢

No. of elemen: 3068"

f: Feed length m Element size :4.72 mn
d: Depth of Cutmr Meshtype :Tetra mes

Fig. 4. FEM model for calculation of learning patte
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Fig. 5. Experimental results for the air w velocity and the heat transfer coeffice

3.4. CALCULATION OF CUTTING SPEED USING NEURAL NET@RK

The weight and offset valuedjj, Vi, f;, andy, between each unit are calculated
using the neural network developed in previousiseciThe representative equation (3) is

obtained by using these values.
ATm:g(VVji, \/jkl /le Vkr Tm-ll VI f/ d/ tC/ Atl A OAVE / Q)

18 V,
=2 ; A (3)
=1+ eXp{'(Z\Nji 0, +5)}

Ii:[|1/ |2/ |3/ |4/ |5/ |6l |7l |8]:[Tm-1l VI f/ dl tC/ Atl /I'OCAVE/ Q]
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Here, AT, is the temperature gradient of tool tip at outlpyer for the timd,,.;. This model
will be used in inverse analysigae is the average value of theoretically calculatedth
transfer rate at each pair of Pr) B, and B, P; in section 3.3. Thigse value has been
adjusted by multiplying with custom-made coeffigignwill be explained in section. 3.5)
for the application on localized individual machsnd@his is the newly added value to neural
network for renovation of calculated tool tip termggere.

The algorithm for calculating optimum cutting spegdhown in Fig. 6. The variation
of tool tip temperature in each cutting steps showrfig. 2, can be calculated using
equation (1) and (3), for time steps =1, 2, 3, ...... 10 with easy algebraic equation.
At that time, the cutting speed at which the tdpl temperature would not exceed the
maximum allowable temperature (example ‘8B0@or carbide tool)8] is iterated using
golden section method. And then the new cuttingedpabtained from this calculation is
used in the actual cutting experiment as optimuthngucondition.

Here, the reason for selecting the cutting speadas influence parameter to control
tool temperature among three factors of, cuttingeslp cutting depth and feed speed is,
cutting speed governed largest cutting voluy&jg9] and thus the most effective factor for
tool temperature. Tool tip temperature at eachirgiteps for the work piece is calculated
and confirmed whether it is below the maximum aldwe temperature and if necessary, the
new cutting speed is re-calculated. And then, thal temperature of tool tip at complete
cutting of a work piece is calculated. This tempaawill be used as the initial temperature
for the second workpiece and the related cuttingedpfor second workpiece will be
calculated again. At that time, other cuttipgrameters are kept constant as in the first

START
Updating of cutting

condition /" Cutting
condition

\l/ Input Searching optimum

Calculating4T andT,, by eq.(1)|_| cutting speed/ by
and eq.(3) using neural netwdfk| Golden section
method

v
<

YES

End oimachining
(tm=1)?

YES

Fig. 6. Algorithm for calculation of optimum cutgrspeed
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workpiece. This process will continue till tool tigemperature reaches steady state
condition. Moreover, this operation is applicabkfdre actual cutting by pre-reading NC
program and after that, actual cutting process lmamone with newly optimized cutting
speed in order to maintain the productivity.

3.5. MODIFICATION FOR LOCALIZED INDIVIDUAL MACHINES (CUSTOM-MADE COEFFICIENT)

There may have different situations effecting heansfer coefficient for individual
machines in different environments in actual aian, even the same cutting condition is
used. For the dry cutting, the air flow velocityoand the tool largely affects the heat
transfer rate. For wet cutting, the oil flow ratasha direct effect. The cutting speed, the
distance of tool from the chuck, work-piece diametae amount of oil supplying, the
structure and location of machine have indirece@t. Therefore, the heat transfer rate is
not a constant. For this case, the consideratidaaoaflized factor is needed to be put in the
proposed method. Therefore, the custom-made cazftic is applied to theoretical value
of average heat transfer coefficiemt,e in equation (3). The custom-made coefficiént
represents how many times the actual heat tramaferfor different individual machine
differs from that obtained by calculation with FE&vlalysis in the first time.

In this case, the machine which is subjected tainltustom-made coefficieatcould
be operated by following procedure. First, cuttprgcess is taken with cutting condition
shown in Table 3., using this machine and the teolperature will be measured. Then,
putting theoretically calculated heat transfer Giomit aave in equation (3). Finally the
unique unknown value of custom-made coefficignis obtained. Thel value is then
inserted in (-aave ) in the calculations of tool tip temperature. Heéhe, tool tip temperature
is interpolated using FEM simulation methld®], by fitting the measured temperature at
two points on cutting tool with thermo-couples.

1l

(a) Dry cutting (b) Wet cutting  (c) Dry
cuttinc using

2.5

= = n
o w o

Oder-made coefficient
o
o)

o

Fig. 7. Relationship between the order-made céeffi¢ and the machine tool with localized and specifigrenment

In this study, three cutting experiments to ob@istom-made coefficieritare taken
for dry cutting, wet cutting and dry cutting witlarf (for creating a different localized
machine) are done using the cutting condition ibl&&, and the custom-made coefficiént
Is calculated based on the tool tip temperaturéhait time. The results for each cutting
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process are shown in Fig. 7. The custom-made coeitil is as shown in (a) dry cutting,
(b) wet cutting and (c) dry cutting with fan. Thastom-made coefficient for (a) dry
cutting and (b) wet cutting are almost near toot which the process conditions are almost
the same as the teaching data when neural netwodnstructed. The localized valudor

(c) dry cutting with fan is different to that of)(dry cutting. Therefore, it is confirmed that,
the proposed method is applicable for different maes in different places, with easy

adaption.

4. THE EVALUATION FOR CUTTING OF Ti6Al4V

The evaluation for the proposed method was caogdy cutting Ti6AI4V (material
with low thermal conductivity) using a lathe withegification mentioned in Table 2. The
custom-made coefficieritare,A = 1.35 for dry cutting} = 1.38 for wet cutting antl= 2.08
for dry cutting with fan respectively. By pulty thesei values in equation (3), taking
maximum allowable tool tip temperature at 80Gnd using the cutting condition in Table
3, the optimum cutting speed was calculated foheatting step using proposed method.

Table 2. Specification of the lathe used

Items of specification Takisawa TAC-460

< | Power of main motor kw 12

2 [ Max. spindle speed in 1500

g Chuck size mm 210

T | Chuck type (no. jaws) 3

Max. speed (Z direction) i 5000

Max. speed (X direction) mnm 2500

Coolent type MegaPlus LA20

Coolent flow rate ¢/min 16

Size of bed 370x340x197

Table 3. Cutting conditions used
(a) Dry (b) Wet (c) Dry using fan
Cutting condition V; f d V; f d V; f d
m/min | mm/re | mm m/min | mm/ire | mm m/min | mm/re | mm
§ Rough 35.7 0.3 1.0 35.3 0.5 1.0 36.9 0.8 1/0
“—é Middle 36.1 0.3 1.0 61.4 0.2 0.5 58.8 0.4 0.6
w Finish 89.5 0.35 0.2 47.3 0.35 0.5 59.5 0.35 0|5
§ Rough 58.0 0.2 1.0 82.8 0.2 1.0 426 0.25 1/0
9 Middle 45.7 0.2 0.5 63.1 0.3 0.5 60.7 0.26 0.6
n Finish 43.8 0.2 0.4 445 0.3§ 0.3 63.4 0.25 05
Cooling method Dry Qil (@min) Fan air
Cutting tool Carbide TH10
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The cutting speed before and after optimizing, tgokemperature for calculated and
experimental measurements values for drying cuyttive cutting and dry cutting with fan
are shown in Fig. 8., 9., 10., respectively. Theimam tool tip temperature for dry cutting
with fan in Fig. 10, exhibits 1.1% of error compayiwith maximum allowable temperature
800°C, even though custom-made coefficiéris comparably larger than other two cases.
The largest error value is 1.4% among these thasesc Therefore, the proposed method is
applicable for any different types of machines iffecent places by applying custom-made
coefficientA for adaption to that environment.

In conventional cutting, it takes long time to detae the optimum cutting conditions
with many trial and error estimations. By using gmeed method, the optimum cutting
condition can be obtained in a short time befotéroy

5. CONCLUSION

From this research, it can be concluded that; @bl Tip temperature can be controlled
by using the developed inverse analysis of newtbork. (2) The cutting tool life can be
maintained by this method, for cutting material§mow thermal conductivity.

REFERENCES

[1] HIROSAKI K, SHINTANI K, KATO H., KANEUJI A., 2006, High Speed Milling of Bio-Titanium Alloys using
a Binder-less PcBN Tool, Journal of the Japan Society for Precision Ergging2/11, 1397-1401.

[2] MAHFUDZ AL HUDA, KEIJI YAMADA, TAKASHI UEDA., 1999, Measurement of tool-chip interface
temperature in turning using two-color pyrometer, Transactions of the Japan Society of Mechanicajirteer,
Series C, 65/633, 360-367.

[3] MEKARU SHUNEI, FUKUMOTO ISAO, MAKISHI TAKASHI, HIRAI TOSHIO., 1993,Tool life processes in
orthogonal cutting of difficult to machine materials by coating tools, Proceeding of the Rhukyu University, 45, 13-
20.

[4] NARUTAKI N., YAMANE Y., 1993, High speed machining of Inconel 718 with ceramic tools, Annals CIRP,
42/1, 103-106.

[5] TANABE I, BINH H. T., IYAMA T., EIKE KRATZ., 2008, Development of New Electro Deposited Diamond
Tool and Its Compulsory Cooling System for high Speed Grinding of Titanium and Nickel Alloys, Transactions
of the Japan Society of Mechanical Engineer, S&ie&4/747, 2797-2802.

[6] TANABE I., IKEDA S., URANO K., 2003,Esimation of Optimum Temperature for Cooling Oil on a Spindle
Using Inverse Analysis of Neural Network (Effect of Relearning), Transactions of the Japan Society of Mechanical
Engineer, Series C, 69/679, 819-824.

[71 TAKEYAMA H., 1980, cutting processing (in Japanese), Maruzen Co., Ltd., 24-47.

[8] TAKAHIRO S., TOHRU 1., KENICHI K., EIJI U., 198, Effect of temperature on fracture characteristic
of carbide material and on its deterioration process by impact repetition, Journal of the Japan Society for
Precision Engineer, 53/10, 1589-1595.

[91 TAKEYAMA H., cutting processing (in Japanese), Maruzen Co., L1898, 64.

[10] USUKI H.,SATO K., FERUYA S., 2005igh Speed Dry End Milling of Titanium Alloy with Coated Carbide
Tool, Journal of the Japan Society for Precision Erggingl/4, 491-495.



