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CONTROL OF TOOL TEMPERATURE USING NEURAL NETWORK FOR MACHINING 
MATERIALS WITH LOW THERMAL CONDUCTIVITY 

Recently titanium and nickel alloys have become pre-eminent for aeronautic and astronautic parts. Since these 
cutting and becomes severely demaged. It is important to control cutting tool temperature. In this paper, the 
control system of tool tip temperature using inverse analysis of neural network for machining these materials 
was developed and evaluated. The neural network between cutting conditions and tool temperature was firstly 
created by a set of teaching data. Then, a mathematical model using algebra was developed. Cutting speed was 
selected as parameter to be controlled in reducing tool temperature. The relationship between the optimum 
cutting speed and cutting time was calculated with the inverse analysis of neural network by pre-reading of NC 
program before cutting. The tool temperature can be maintained at the desired value. The developed system is 
evaluated by the expaeriments using the turning process and workpiece of Ti6Al4V. From the results, it is 
concluded that; (1) Tool tip temperature can be controlled by using the proposed inverse analysis of the neural 
network, (2) CThe cutting tool life can be maintained by this method, for cutting materials with low thermal 
conductivity. 

1. INTRODUCTION 

Recently, Titanium alloys and Nickel alloys have become pre-eminent for making 
aeronautic and astronautic parts. The cutting technologies for these materials are also being 
urgently revealed [4],[10]. Thermal conductivities of these materials are very low and thus, 
tool temperature becomes very high and the tool strength is reduced. Many investigations to 
solve this problem have been done by using cutting methods with smaller depth of cut, high 
speed cutting processing [1] and water evaporation method by supplying water inside the 
cutting tool for dry grinding process [5]. However, these methods could not successfully 
achieve efficient cutting of those low thermal conductivity materials. Therefore, in this 
research, a tool tip temperature control system using a neural network for cutting low 
thermal conductivity materials is developed and evaluated. 
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The cutting condition is pre-read from the NC program and tool tip temperature is 
predicted by inverse analysis method using developed neural network. Then, the calculation 
for optimum cutting speed at which tool tip temperature can be maintained below maximum 
allowable limit (tool failure temperature) is carried out. After that, NC program is corrected 
using this new optimum cutting speed for improvement of productivity through improving 
of tool life. 

2. THE ALGORITHM OF THE METHOD 

The algorithm of the proposed method is shown in Fig. 1. The steps are, (1) Firstly, 
tool tip temperature values for cutting low thermal conductivity material Ti6Al4V with 
various cutting conditions are calculated by FEM (Finite Element Method). And then, the 
neural network is created by using these values as teaching data. (2) Using this neural 
network, the algebraic relation between tool tip temperature and cutting speed is derived 
(Inverse Analysis Model). (3) By comparing calculated tool tip temperatures and 
experimental results, the inverse analysis model will be updated by adjusting a correction 
coefficient, known as the “Custom-made coefficient”. (4) The optimum cutting speed for 
maintaining maximum allowable tool tip temperature is calculated using the newly 
developed inverse analysis model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Flowchart of algorithm regarding the proposed method 
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Neural-network between the tool temperature and cutting condition is 
built up by using only FEM thermal simulation results. 

Then the inverse analysis model using the neural-network is built up. 
Then, relationship between tool tip temperature and cutting speed can 
be described by algebraic formula. 

The inverse analysis model is renovated for localized individual 
machine tools by using experimental data cutting with individual 
machines. Coefficient used for renovation is called “Custom-made 
coefficient”. 

Optimum cutting speed for the maximum allowable temperature of 
tool is calculated by the renovated inverse analysis model. Then the 
optimum cutting speed for each cutting steps is calculate using the pre-
read data from NC program. 
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3. THE STRUCTURE OF INVERSE ANALYSIS MODEL OF NEURAL NETWORK 
AND THE CALCULATION OF OPTIMUM CUTTING SPEED 

3.1. THE ILLUSTRATION OF THE OBJECT CUTTING PROCESS 

Fig. 2 shows the illustration of work-piece and tool-tip temperature curve along cutting 
tool path. The work piece is a cylindrical shape with groove at the end of tool path so that to 
obtain exact cutting length on the cylindrical face. The cutting steps are defined at end face 
and cylindrical face with rough, medium and finish cutting as shown in tool path of Fig. 2. 
The cutting processes will be done continuously by changing work-pieces until the tool 
temperature reaches steady state. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Schematic view of the relationship between the cutting time and the temperature of the tool 
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3.2. THE STRUCTURE OF NEURAL NETWORK MODEL 

The cutting heat conducts into cutting tool from the rake face and the flank face. The 
amount of heat entering into the tool will be large for those materials with higher cutting 
resistance, low thermal conductivity, higher frictional coefficient between chip and tool. 
The heat transfer rate at the place near tool tip will be larger due to large air blowing caused 
by workpiece and chuck. But, it will be smaller due to less air blowing with barrier of tool 
post, around tool holder. Heat transfer coefficient is also largely different for the cases  
of dry cutting and wet cutting. However, this effect is very small for high speed cutting due 
to extremely fast changing of tool temperature. 

Fig. 3 shows the structure of neural network layers. This model is using typical three 
layers structure [6], input layer, hidden layer and output layer. Sigmoid function in middle 
layer and linear function in output layer are used respectively. The input factors are (1) tool 
tip temperature Tm-1 at time step tm-1 for time interval ∆t before  the interesting time step t m, 
(2) cutting condition (cutting depth d, feed speed f, cutting speed V and cutting time tc for 
each step of cutting, (3) time interval ∆t, (4) average heat transfer coefficient αAVE, (5) the 
theoretical cutting heat energy Q calculated from the thermal properties of workpiece and 
tool, using cutting theory [7]. The output layer factors are the tool tip temperature gradient 
∆Tm between time step t m-1 and t m. The tool tip temperature Tm at time step t m can be 
calculated by using equation (1) with this output result ∆Tm. 

Tm ＝ ∆Tm・∆t ＋ Tm-1                                                      (1) 

m＝1, 2, 3,・・・10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Neural network model between the cutting condition and the temperature information of tool 
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In the calculation, the time interval ∆t is taken 1/10 the time of each cutting step tc. 
Taking the larger number of time steps could obtain more accurate convergence for neural 
network. However, this will take long time for calculation and thus, only 10 steps  
of intervals are used in this method. In the neural network training, it is observed that 
computing out the temperature gradient ∆Tm in output layer and substituting it in equation 
(1), could obtain more accurate convergence with smaller value of error compare with direct 
calculation of tool tip temperature Tm in output layer.  

The neural network training is done in order to satisfy that the sum of the squares  
of the differences between teaching data and output data to be smallest by using steepest 
descent method. The weight values Wji, Vjk and offset values βj, γk are acquired using 
successive correction method inside the program. Here, Wji is weight between input layer 
and hidden layer, Vjk is weight between hidden layer and output layer, βj is offset for hidden 
layer and γk is offset for output layer. Back propagation method is used here. The error 
function Ep for learning pattern p is shown in equation (2).  

Ep          (Trkp ― Dkp )
2                                                      (2) 

Here, Trkp is the teaching data for unit k which is relating to the learning pattern p, and Dkp 
is output data for unit k which is relating the learning pattern p. 

3.3. CONSTRUCTION OF TEACHING DATA USING FEM AND TRAINING PROCESS  

The teaching data for construction of neural network is simply acquired by calculation 
using FEM thermal analysis. The FEM model used in analysis is shown in Fig. 4, and 
Ti6Al4V is selected as workpiece. The heat entering area on the tool is determined using the 
cutting conditions in Table 1. The amount of heat entering is calculated from the cutting 
condition and thermal properties of workpiece and tool using cutting theory [7]. The 
variations of heat transfer coefficient for air and oil at the related places are shown in Fig. 5. 
In FEM analysis, heat transfer coefficient used for dry cutting is calculated by using the 
measured values of airflow velocity at the place P1, P2 and P3 around the tool as shown in 
Fig. 5, and the dynamic viscosity of air at 20

o

C. For wet cutting, it is calculated using flow 

velocity of cutting oil on the tool surface P4, for flow rate 1～16ℓ/min of cutting oil and the 

dynamic viscosity of cutting oil. 
The input data to the neural network are spindle speed, diameter of workpiece, 

distance of tool from chuck, and the output data are heat transfer coefficient at surfaces P1, 
P2 and P3. Cutting time periods are taken for cutting of (I) rough cutting, (II) medium 
cutting and (III) finish cutting for end face and cylindrical face as shown in Fig. 2. The 
calculation is taken till the tool tip temperature reaches the steady state condition. In the 
simulation, cutting speed V, feed speed f, cutting depth d and magnification factor C for heat 
transfer rate are taken as parameters. Then, the basic data set are defined for the conditions 
where tool tip temperature would become high, middle and low values. By altering only one 

∑=
k2

1
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parameter (Each change element in Table 1,) from the cutting condition V, f, d, m, it can be 
covered for representing the whole range of basic data set. There becomes altogether 54 set 
of analysis data, included for dry and wet cutting processes. The neural network training is 
done using these data and tool tip temperature gradient ∆T m at each time interval ∆t for each 
cutting steps and air cutting intervals along tool path as teaching data. 

After training the neural network with 54 set of data, the error value Ep become small 

enough 6.5×10-32 at 55th time. Therefore, this developed neural network is possible to use as  

temperature controlling tool. 
 
 

Table 1. Data set of FEM analysis for teaching data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. FEM model for calculation of learning pattern 
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3.4. CALCULATION OF CUTTING SPEED USING NEURAL NETWORK 

The weight and offset values Wji，Vjk，βj，and γk between each unit are calculated 

using the neural network developed in previous section. The representative equation (3) is 
obtained by using these values. 
 
 
 
 
 
 
 
 Ii = [I1，I2，I3，I4，I5，I6，I7，I8] = [Tm-1，V，f，d，tc，∆t，λ・αAVE，Q] 
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Fig. 5. Experimental results for the air flow velocity and the heat transfer coefficeient 
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(a) Heat transfer coefficient at place P1 around cutting tool  
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(b) Heat transfer coefficient at place P2 around cutting tool  
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Here, ∆Tm is the temperature gradient of tool tip at output layer for the time tm-1. This model 
will be used in inverse analysis. αAVE is the average value of theoretically calculated heat 
transfer rate at each pair of P1 (or) P4 and P2, P3 in section 3.3. This αAVE value has been 
adjusted by multiplying with custom-made coefficient λ (will be explained in section. 3.5) 
for the application on localized individual machines. This is the newly added value to neural 
network for renovation of calculated tool tip temperature.    

The algorithm for calculating optimum cutting speed is shown in Fig. 6. The variation 
of tool tip temperature in each cutting steps shown in Fig. 2, can be calculated using 
equation (1) and (3), for time steps m =1, 2, 3, ……. 10 with easy algebraic equation.  
At that time, the cutting speed at which the tool tip temperature would not exceed the 
maximum allowable temperature (example 800

o

C for carbide tool) [8]  is iterated using 
golden section method. And then the new cutting speed obtained from this calculation is 
used in the actual cutting experiment as optimum cutting condition. 

Here, the reason for selecting the cutting speed as main influence parameter to control 
tool temperature among three factors of, cutting speed, cutting depth and feed speed is, 
cutting speed governed largest cutting volume [2],[9] and thus the most effective factor for 
tool temperature. Tool tip temperature at each cutting steps for the work piece is calculated 
and confirmed whether it is below the maximum allowable temperature and if necessary, the 
new cutting speed is re-calculated. And then, the final temperature of tool tip at complete 
cutting of a work piece is calculated. This temperature will be used as the initial temperature 
for the second workpiece and the related cutting speed for second workpiece will be 
calculated  again. At  that  time, other  cutting  parameters  are  kept  constant  as  in the first  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 6. Algorithm for calculation of optimum cutting speed 
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workpiece. This process will continue till tool tip temperature reaches steady state 
condition. Moreover, this operation is applicable before actual cutting by pre-reading NC 
program and after that, actual cutting process can be done with newly optimized cutting 
speed in order to maintain the productivity.  

3.5. MODIFICATION FOR LOCALIZED INDIVIDUAL MACHINES (CUSTOM-MADE COEFFICIENT)  

There may have different situations effecting heat transfer coefficient for individual 
machines in different environments in actual application, even the same cutting condition is 
used. For the dry cutting, the air flow velocity around the tool largely affects the heat 
transfer rate. For wet cutting, the oil flow rate has a direct effect. The cutting speed, the 
distance of tool from the chuck, work-piece diameter, the amount of oil supplying, the 
structure and location of machine have indirect effects. Therefore, the heat transfer rate is 
not a constant. For this case, the consideration of localized factor is needed to be put in the 
proposed method. Therefore, the custom-made coefficient λ is applied to theoretical value  
of average heat transfer coefficient αAVE in equation (3). The custom-made coefficient λ 
represents how many times the actual heat transfer rate for different individual machine 
differs from that obtained by calculation with FEM analysis in the first time. 

In this case, the machine which is subjected to obtain custom-made coefficient λ could 
be operated by following procedure. First, cutting process is taken with cutting condition 
shown in Table 3., using this machine and the tool temperature will be measured. Then, 
putting theoretically calculated heat transfer coefficient αAVE in equation (3). Finally the 
unique unknown value of custom-made coefficient λ is obtained. The λ value is then 
inserted in ( λ·αAVE ) in the calculations of tool tip temperature. Here, the tool tip temperature 
is interpolated using FEM simulation method [10], by fitting the measured temperature at 
two points on cutting tool with thermo-couples.  

 
 
 
 
 

 
 

 
 
 
 
 
 

Fig. 7. Relationship between the order-made coefficient λ and the machine tool with localized and specific environment 
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process are shown in Fig. 7. The custom-made coefficient λ is as shown in (a) dry cutting, 
(b) wet cutting and (c) dry cutting with fan. The custom-made coefficient λ for (a) dry 
cutting and (b) wet cutting are almost near to 1, for which the process conditions are almost 
the same as the teaching data when neural network is constructed. The localized value λ for 
(c) dry cutting with fan is different to that of (a) dry cutting. Therefore, it is confirmed that, 
the proposed method is applicable for different machines in different places, with easy 
adaption. 

4. THE EVALUATION FOR CUTTING OF Ti6Al4V 

The evaluation for the proposed method was carried out by cutting Ti6Al4V (material 
with low thermal conductivity) using a lathe with specification mentioned in Table 2. The 
custom-made coefficient λ are, λ = 1.35 for dry cutting, λ = 1.38 for wet cutting and λ = 2.08 
for  dry cutting  with  fan respectively. By  putting  these  λ  values  in  equation  (3),  taking  
maximum allowable tool tip temperature at 8000C and using the cutting condition in Table 
3, the optimum cutting speed was calculated for each cutting step using proposed method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Specification of the lathe used 

Items of specification Takisawa TAC-460 

 Power of main motor                          kW 12 

 Max. spindle speed                             min-1 1500 

 Chuck size                                           mm 210 

H
ea

d
 s

to
ck

 

 Chuck type (no. jaws) 3 

Max. speed (Z direction)                        mm/min 5000 

Max. speed (X direction)                       mm/min 2500 

Coolent type MegaPlus LA20 

Coolent flow rate                                          ℓ/min 16 

Size of bed 370×340×197 
 

(a) Dry (b) Wet (c) Dry using fan 
Cutting condition V 

m/min 
f 

mm/re
d 

mm 
V 

m/min 
f 

mm/re
d 

mm 
V 

m/min 
f 

mm/re
d 

mm 
Rough 35.7 0.3 1.0 35.3 0.5 1.0 36.9 0.3 1.0 

Middle 36.1 0.3 1.0 61.4 0.2 0.5 58.8 0.3 0.6 

E
nd

 fa
ce

 

Finish 89.5 0.35 0.2 47.3 0.35 0.5 59.5 0.35 0.5 

Rough 58.0 0.2 1.0 82.8 0.2 1.0 42.5 0.25 1.0 

Middle 45.7 0.2 0.5 63.1 0.3 0.5 60.7 0.25 0.6 

S
id

e 
fa

ce
 

Finish 43.8 0.2 0.4 44.5 0.35 0.3 63.4 0.25 0.5 

Cooling method Dry Oil (2ℓ/min) Fan air 

Cutting tool Carbide TH10 

 

Table 3. Cutting conditions used 
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Fig. 8. Optimized cutting speed and temperature on the tip of tool during dry cutting 
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Fig. 9. Optimized cutting speed and temperature on the tip of tool during wet cutting 

(a) The optimized cutting speed 

C
u

tt
in

g
 s

p
ee

d
 m

/m
in 

Time sec 

2

1

 0 

4

3

6

5

8

7

100 
9 After 

optimizing Before 
optimizing 

0 100 400 50
0 

800 900 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0 100 400 50
0 

800 900 
Time sec 

(b) Temperature on the tip of the tool 

Experimental result 
Calculation result 

Fig. 10. Optimized cutting speed and temperature on the tip of tool during dry cutting using a fan 
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The cutting speed before and after optimizing, tool tip temperature for calculated and 
experimental measurements values for drying cutting, wet cutting and dry cutting with fan 
are shown in Fig. 8., 9., 10., respectively. The maximum tool tip temperature for dry cutting 
with fan in Fig. 10, exhibits 1.1% of error comparing with maximum allowable temperature 
8000C, even though custom-made coefficient λ is comparably larger than other two cases. 
The largest error value is 1.4% among these three cases. Therefore, the proposed method is 
applicable for any different types of machines at different places by applying custom-made 
coefficient λ for adaption to that environment.  

In conventional cutting, it takes long time to determine the optimum cutting conditions 
with many trial and error estimations. By using proposed method, the optimum cutting 
condition can be obtained in a short time before cutting.   

5. CONCLUSION 

From this research, it can be concluded that; (1) Tool tip temperature can be controlled 
by using the developed inverse analysis of neural network. (2) The cutting tool life can be 
maintained by this method, for cutting materials with low thermal conductivity. 
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