PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability and predictability of Zener reference voltage standards: long-term experience by the Lithuanian National Metrology Institute

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Lithuanian national standard of voltage is maintained as the basis for calibration and measurement capabilities of Lithuania published in the Key Comparison Database of the International Bureau of Weights and Measures (BIPM). The stability and uncertainty of the voltage value measurements, performed since 2004 using the calibrated values of the Zener solid-state voltage standards (zeners) to predict their future behavior, are discussed. Conclusions regarding short- and long-term predictability of their behavior, which can be used for choosing an appropriate calibration period, are presented. An estimate of merit for approximations is proposed; based upon the estimate, it is concluded that the hyperbolic approximation is the best one in the most of the cases. Also discussed is the behavior of voltage dividers used in the zeners as well as the recovery of the zeners after a failure of their power supply. It is concluded that the voltage standards operated by the Lithuanian National Electrical Standards Laboratory feature stable drift of the voltage reproduced, which is well predictable by means of linear or non-linear regression.
Rocznik
Strony
431--449
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
autor
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
Bibliografia
  • [1] Zener, C. (1934). A Theory of the Electrical Breakdown of Solid Dielectrics. Proceedings of the Royal Society A, 145(855), 523-529. https://doi.org/10.1098/rspa.1934.0116
  • [2] Huntley, L. (1987). A primary standard of voltage maintained in solid-state references. IEEE Transactions on Instrumentation and Measurement, IM-36(4), 908-912. https://doi.org/10.1109/tim.1987.6312580
  • [3] Spreadbury, P. J. (1991). The ultra-Zener - a portable replacement for the Western cell? IEEE Transactions on Instrumentation and Measurement, 40(2), 343-346. https://doi.org/10.1109/TIM.1990.1032955
  • [4] Josephson, B. D. (1964). Coupled Superconductors. Reviews of Modern Physics, 36(1), 216-220. https://doi.org/10.1103/revmodphys.36.216
  • [5] De Souza, H., Trigo, L., & Slomovitz, D. (2021, November). An Ultra Stable Zener Voltage Standard - Fifteen Years of Surveillance. 2021 IEEE URUCON. 2021 IEEE URUCON. https://doi.org/10.1109/urucon53396.2021.9647064
  • [6] Slomovitz, D., Landim, R. P., de Souza, H., & Trigo, L. (2023). Bilateral comparison of dc voltage at 10 V between UTE and INMETRO. Journal of Physics: Conference Series, 2606(1), 012029. https://doi.org/10.1088/1742-6596/2606/1/012029
  • [7] Solve, S., Chayramy, R., & Yang, S. (2018, July). Pressure Sensitivity Coefficients of the BIPM Secondary Voltage Standards. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). https://doi.org/10.1109/cpem.2018.8501074
  • [8] Witt, T. J. (2002). Maintenance and dissemination of voltage standards by Zener-diode-based instruments. IEE Proceedings - Science, Measurement and Technology, 149(6), 305-312. https://doi.org/10.1049/ip-smt:20020640
  • [9] Maruyama, M., Urano, C., Kaneko, N.-H., Yonezawa, T., Kanai, T., Sannomaru, E., Honjot, J., & Yoshino, Y. (2018, July). Investigation of Atmospheric-Pressure Dependence of Compact Detachable Zener Module. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). https://doi.org/10.1109/cpem.2018.8501195
  • [10] Stepanov, A., Katkov, A., & Chunovkina, A. (2018, July). Evaluation of Zener Standard Drifts. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). https://doi.org/10.1109/cpem.2018.8500924
  • [11] Yang, Y., Meng, J., & Yao, W. (2021). Design of a High-precision 5V/10V DC Voltage Reference Source. Journal of Physics: Conference Series, 2087(1), 012034. https://doi.org/10.1088/1742-6596/2087/1/012034
  • [12] Maruyama, M., Urano, C., Kaneko, N.-H., Kanai, T., Sannomaru, E., Honjo, J., Tanaka, I., & Yoshino, Y. (2020, August). Investigation of the Influence of Humidity on the Output Voltage of a Prototype of a Compact Detachable Zener Module. 2020 Conference on Precision Electromagnetic Measurements (CPEM). 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). https://doi.org/10.1109/cpem49742.2020.9191792
  • [13] Bucur, V , Banarie, G., & Marinca, S. (2023, June). Compensation of Temperature Nonlinearity in a Zener-*Based Voltage Reference. 2023 30th International Conference on Mixed Design of Integrated Circuits and System (MIXDES). https://doi.org/10.23919/mixdes58562.2023.10203215
  • [14] Bucur, V , Banarie, G., Marinca, S., & Bodea, M. (2018, June). A Zener-Based Voltage Reference Design Compensated Using a ∆VBE Stack. 2018 25th International Conference “Mixed Design of Integrated Circuits and System” (MIXDES) (pp. 116-120). IEEE. https://doi.org/10.23919/mixdes.2018.8436687
  • [15] Champon, X., Angeles, D., Buchheit, T., Canfield, D., Tucker, J. D., & Adams, J. (2023, March 7). A Statistical Assessment of Zener Diode Behavior Using Functional Data Analysis. 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). (pp. 1-3). IEEE. https://doi.org/10.1109/edtm55494.2023.10103056
  • [16] Musioł, K., Makowski, P., & Skubis, T. (2015) Coherence investigations of DC voltage group standard. Bulletin of the Polish Academy of Sciences. Technical Sciences, 63(2), 443-448. https://doi.org/10.1515/bpasts-2015-0050
  • [17] Staniloiu, M.-F., Popescu, H.-S., Rezmerita, G., Vlad, I., & Iordache, M. (2022, October). SPICE model of a real Zener diode tested at room temperature. International Conference and Exposition on Electrical and Power Engineering (EPE) (pp. 182-186). IEEE. https://doi.org/10.1109/EPE56121.2022.9959813
  • [18] McAfee, R., Fish, M., & Gess, J. (2022, May). Zener Diode Reverse Breakdown Voltage as a Simultaneous Heating and Temperature Sensing Element. 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm) (pp. 1-5). IEEE. https://doi.org/10.1109/iTherm54085.2022.9899600
  • [19] Assi, S. A., Omarov, J., & Yıldırım, B. S. (2023). A Novel Microwave Noise Generator Using Multiple Zener Diodes Connected in Series. IEEE Microwave and Wireless Technology Letters, 33(9), 1290-1292. https://doi.org/10.1109/lmwt.2022.3227620
  • [20] Meléndez, R., Solano, A., & Sánchez, H. (2018, July). Zener DC Voltage Standard Shutdown Behavior. Conference on Precision Electromagnetic Measurements (CPEM 2018) (pp. 1-2). IEEE. https://doi.org/10.1109/CPEM.2018.8501099
  • [21] Bartašiūnas, A., Miškinis, R., Smirnov, D., & Urba, E. (2020). Investigation of the Lithuanian national standard of electric resistance. Metrology and Measurement Systems, 27(4), 615-624. https://doi.org/10.24425/mms.2020.134842
  • [22] Fluke Corporation. (n.d.). A practical approach to maintaining DC reference standard [Application Note]. Fluke Digital Library. https://www.elcal.ch/files/11749-eng-01-a.pdf
  • [23] Key Comparison Database of the BIPM. Calibration and Measurement Capabilities. Electricity and Magnetism, Lithuania.
  • [24] Barnes, J. A., Chi, A. R., Cutler, L. S., Healey, D. J., Leeson, D. B., McGunigal, T. E., Mullen, J. A., Smith, W. L., Sydnor, R. L., Vessot, R. F. C., & Winkler, G. M. R. (1971). Characterization of Frequency Stability. IEEE Transactions on Instrumentation and Measurement, IM-20(2), 105-120. https://doi.org/10.1109/tim.1971.5570702
  • [25] Harris, D. C. (1998). Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver. Journal of Chemical Education, 75(1), 119. https://doi.org/10.1021/ed075p119
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa239ed0-1ff6-4b0b-8ec8-40114dc1ae34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.