Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a hybrid classification method based on the determination of the optimal number of classes according to uncontrolled classification followed by image processing techniques of controlled classification. A criterion for determining the optimal number of classes is proposed based on the definition of averaged values differences of average spectral brightness among the classes. Space images from satellites Ikonos (2002, 2007) and QuickBird (2010) were used to study different time cuttings in the forests of the Carpathian region. A significant amount of ground observation was held for getting test information. A Hybrid Classification Method is used for different time cuttings by QuickBird satellite images and implemented in a software environment of ERDAS Imagine. In order to obtain acreage of cuttings made for the period of 2002-2007 and 2007-2010, a comparative analysis of cuttings is introduced in these time intervals and their area is determined on the basis of the digital images of polygons in the ArcGIS software environment.
Czasopismo
Rocznik
Tom
Strony
43--54
Opis fizyczny
Bibliogr. 10 poz., fot., rys., tab.
Twórcy
autor
- Lviv National Polytechnic University Department of Photogrammetry and Geoinformatics Ukraine, 79013 Lviv, Bandera Street, 12
autor
- Lviv National Polytechnic University Department of Photogrammetry and Geoinformatics Ukraine, 79013 Lviv, Bandera Street, 12
autor
- Lviv National Polytechnic University Department of Photogrammetry and Geoinformatics Ukraine, 79013 Lviv, Bandera Street, 12
Bibliografia
- Anwar S. 2012. Detection and spatial analysis of selective logging with geometrically corrected Landsat images. Stein Alfred. Int. J. Remote Sens., 33, 24, 7820-7843.
- Havlon L. 2007. Vyuzitie fotogrametrickych metod pri vyhodnoteni poskodenia lesnych porastov. Geod. a kartogr. obz.., 53, 7-8, 133-136.
- Kovacs F. 2007. Assessment of regional variations in biomass production using satellite image analysis between 1992 and 2004. Trans. GIS, 11, 6, 911-926.
- Kozak J., Estreguil C., Vogt P., Eur. J. 2007. Forest cover and pattern changes in the Carpatians over the last decades. Forest Res., 126, 1, 77-90.
- Lang M., Jurjo M., Adermann V., Korjus H. 2006. Integrated approach for quantitative assessment of illegal forest felling in Estonia. Forest., 12, 1, 103-109.
- Sakhatsky A.I., McCallun J., Khodorovsky A.Ja., Bujanova I.Ja. 2002. Classification of space image for forest state identification within the Siberia region. Pt. 1 IIASA, Laxenburg, Austria, IR-02-09, 45.
- Swain P.H., Davis S.M. (eds.) 1978. Remote sensing - the quantitative approach. New York, 396.
- Бурштинська Х.В., Поліщук Б.В., Фіковська О.А. 2014. Гібридна класифікація лісів за космічними знімками високого розрізнення. Сучасні досягнення геодезичної науки та виробництва, I, 27, 156, 86–93.
- Кохан С.С. Востоков А.Б. 2009. Дистанційне зондування Землі: теоретичні основи. Вища шк., 511.
- Лялько В.І., та інш. 2006. Багатоспектральні методи дистанційного зондування Землі в задачах природокористування: Наукова думка, 360.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa22cd26-af14-4eca-95e0-12c4efd5c442