PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proposition of a bubble-particle attachment model based on DLVO van der Waals and electric double layer interactions for froth flotation modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The attachment of bubbles and particles represents one of the sub-processes in froth flotation among others (e.g. collision and detachment). The main interactions present at short distances in such a bubble-particle system are the van der Waals and electrostatic double layer interactions combined in the DLVO theory. In this study, the special features of the attachment process were discussed with a focus on flotation. For the van der Waals interactions, the Hamaker constants were calculated with the help of Lifshitz´ macroscopic theory as a function of the separation distance for specific material combinations. A specific material system (PbS-Water-Air) was used to demonstrate the implementation of bubble-particle attachment of the proposed modelling framework. The effects of additional surfactant/collector and air layers on the solid interface were presented. This framework of layered systems showed that the sign of van der Waals interaction could be turned from repulsive to attractive without the need to extend the DLVO theory. The thickness of the layer as a function of collector adsorption between a particle and a bubble is suggested as a modelling parameter in bubble-particle attachment efficiency.
Rocznik
Strony
art. no. 154812
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany
  • Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany
  • FLSmidth A/S, Vigerslev Allé 77, 2500 Copenhagen, Denmark
  • Dresden University of Technology, Institute for Fluid Mechanics, D-01069 Dresden, Germany
  • Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany
  • Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany
  • TU Bergakademie Freiberg, Institute for Stochastics, D-009599 Freiberg, Germany
Bibliografia
  • ALBIJANIC, B., AMINI, E., WIGHTMAN, E., OZDEMIR, O., NGUYEN, A. V., BRADSHAW, D. J., 2011, A relationship between the bubble-particle attachment time and the mineralogy of a copper-sulphide ore, Minerals Engineering. 24(12), 1335–1339.
  • ALBIJANIC, B., BRADSHAW, D. J., NGUYEN, A. V., 2012, The relationships between the bubble-particle attachment time, collector dosage and the mineralogy of a copper sulfide ore, Minerals Engineering. 36–38, 309–313.
  • ALBIJANIC, B., NIMAL SUBASINGHE, G. K., BRADSHAW, D. J., NGUYEN, A. V., 2015, Influence of liberation on bubble-particle attachment time in flotation, Minerals Engineering. 74, 156–162.
  • BUTT, H. J., GRAF, K., KAPPL, M., 2003, Physics and Chemistry of Interfaces, Wiley-VCH GmbH & Co. KGaA.
  • CARNIE, S. L., CHAN, D. Y. C., 1993, Interaction Free Energy between Plate with Charge Regulation, Journal of Colloid and Interface Science. 161, 260–264.
  • CHAN, D., HEALY, T. W., WHITE, L. R., 1976, Electrical double layer interactions under regulation by surface ionization equilibria-dissimilar amphoteric surfaces, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 72, 2844–2865.
  • DAI, Z., FORNASIERO, D., RALSTON, J., 1999, Particle-Bubble Attachment in Flotation, Journal of Colloid and Interface Science. 217, 70–76.
  • DOSHI, D. A., WATKINS, E. B., ISRAELACHVILI, J. N., MAJEWSKI, J., 2005, Reduced water density at hydrophobic surfaces: Effect of dissolved gases, Proceedings of the National Academy of Sciences of the United States of America. 102(27), 9458–9462.
  • FOUCAUD, Y., LAINÉ, J., FILIPPOV, L. O., BARRÈS, O., KIM, W. J., FILIPPOVA, I. V., PASTORE, M., LEBÈGUE, S., BADAWI, M., 2021, Adsorption mechanisms of fatty acids on fluorite unraveled by infrared spectroscopy and first-principles calculations, Journal of Colloid and Interface Science. 583, 692–703.
  • GRANO, S., 2009, The critical importance of the grinding environment on fine particle recovery in flotation, Minerals Engineering. 22(4), 386–394.
  • GRASSO, D., SUBRAMANIAM, K., BUTKUS, M., STREVETT, K., BERGENDAHL, J., 2002, A review of non-DLVO interactions in environmental colloidal systems In: Re/Views in Environmental Science & Bio/Technology (Vol. 1).
  • GUVEN, O., OZDEMIR, O., KARAAGACLIOGLU, I. E., ÇELIK, M. S., 2015, Surface morphologies and floatability of sand-blasted quartz particles, Minerals Engineering. 70, 1-7.
  • HOGG, R., HEALY, T. W., FUERSTENAU, D. W., 1966, Mutual coagulation of colloidal dispersions, Transactions of the Faraday Society. 62, 1638–1651.
  • JAMESON, G. J., 2012, The effect of surface liberation and particle size on flotation rate constants, Minerals Engineering. 36–38, 132–137.
  • JOSEPH-SOLY, S., QUAST, K., CONNOR, J. N., 2015, Effects of Eh and pH on the oleate flotation of iron oxides, Minerals Engineering. 83, 97–104.
  • KOSIOR, D., ZAWALA, J., NIECIKOWSKA, A., MALYSA, K., 2015, Influence of non-ionic and ionic surfactants on kinetics of the bubble attachment to hydrophilic and hydrophobic solids, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 470, 333–341.
  • KOSIOR, D., ZAWALA, J., TODOROV, R., EXEROWA, D., MALYSA, K., 2014, Bubble bouncing and stability of liquid films formed under dynamic and static conditions from n-octanol solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 460, 391–400.
  • KRASOWSKA, M., MALYSA, K., 2007a, Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness, International Journal of Mineral Processing. 81(4), 205–216.
  • KRASOWSKA, M., MALYSA, K., 2007b, Wetting films in attachment of the colliding bubble, Advances in Colloid and Interface Science. 134–135, 138–150.
  • KRASOWSKA, MARTA, MALYSA, K., BEATTIE, D. A., 2019, Recent advances in studies of bubble-solid interactions and wetting film stability, Current Opinion in Colloid and Interface Science. 44, 48–58.
  • LI, S., NGUYEN, A. V., SUN, Z., 2020, Stochastic induction time of attachment due to the formation of transient holes in the intervening water films between air bubbles and solid surfaces, Journal of Colloid and Interface Science. 565, 345–350.
  • LIFSHITZ, E. M., 1956, The theory of molecular attractive forces between solids, Soviet Physics JETP 2, Part 1. 73, 329–349.
  • LYKLEMA, J., DUVAL, J. F. L., 2005, Hetero-interaction between Gouy-Stern double layers: Charge and potential regulation, Advances in Colloid and Interface Science. 114–115, 27–45.
  • MA, M., 2012, Froth Flotation of Iron Ores, International Journal of Mining Engineering and Mineral Processing. 1(2), 56–61.
  • MISHCHUK, N. A., 2011, The model of hydrophobic attraction in the framework of classical DLVO forces, Advances in Colloid and Interface Science. 168(1–2), 149–166.
  • MISHCHUK, N., RALSTON, J., FORNASIERO, D., 2006, Influence of very small bubbles on particle/bubble heterocoagulation, Journal of Colloid and Interface Science. 301(1), 168–175.
  • MITTAL, J., HUMMER, G., 2008, Static and dynamic correlations in water at hydrophobic interfaces, Proceedings of the National Academy of Sciences of the United States of America. 105(51), 20130–20135.
  • NEETHLING, S. J., BRITO-PARADA, P. R., HADLER, K., CILLIERS, J. J., 2019, The transition from first to zero order flotation kinetics and its implications for the efficiency of large flotation cells, Minerals Engineering. 132, 149–161.
  • NEETHLING, S. J., CILLIERS, J. J., 2003, Modelling flotation froths, International Journal of Mineral Processing. 72(1–4), 267–287.
  • NIECIKOWSKA, A., KRASOWSKA, M., RALSTON, J., MALYSA, K., 2012, Role of surface charge and hydrophobicity in the three-phase contact formation and wetting film stability under dynamic conditions, Journal of Physical Chemistry C. 116(4), 3071–3078.
  • NINHAM, B. W., PARSEGIAN, V. A., 1970, van der Waals Forces: Special Characteristics in Lipid-Water Systems and a General Method of Calculation Based on the Lifshitz Theory, Biophysical Journal. 10(7), 646–663.
  • OCTOBER, L. L., CORIN, K. C., MANONO, M. S., SCHREITHOFER, N., WIESE, J. G., 2020, A fundamental study considering specific ion effects on the attachment of sulfide minerals to air bubbles, Minerals Engineering. 151, 106313.
  • PAN, L., YOON, R. H., 2016, Measurement of hydrophobic forces in thin liquid films of water between bubbles and xanthate-treated gold surfaces, Minerals Engineering. 98, 240–250.
  • PARSEGIAN, V. A., 2006, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers and Physicists, In Cambridge University Press. Cambridge University Press.
  • PARSEGIAN, V. A., NINHAM, B. W., 1973, van der Waals Forces in Many-layered Structures: Generalizations of the Lifshitz Result for two Semi-infinite Media, J. Theor. Biol. 38, 101–109.
  • PATTANAIK, A., VENUGOPAL, R., 2018, Investigation of Adsorption Mechanism of Reagents (Surfactants) System and its Applicability in Iron Ore Flotation – An Overview, Colloids and Interface Science Communications. 25, 41–65.
  • RATH, S. S., SINHA, N., SAHOO, H., DAS, B., MISHRA, B. K., 2014, Molecular modeling studies of oleate adsorption on iron oxides, Applied Surface Science. 295, 115–122.
  • SARVARAMINI, A., LARACHI, F., HART, B., 2016, Collector attachment to lead-activated sphalerite - Experiments and DFT study on pH and solvent effects, Applied Surface Science. 367, 459–472.
  • SCHWARZ, M. P., KOH, P. T. L., VERRELLI, D. I., FENG, Y., 2016, Sequential multi-scale modelling of mineral processing operations, with application to flotation cells, Minerals Engineering. 90, 2–16.
  • SNOSWELL, D. R. E., DUAN, J., FORNASIERO, D., RALSTON, J., 2003, Colloid stability and the influence of dissolved gas, Journal of Physical Chemistry B. 107(13), 2986–2994.
  • TANG, Y., YIN, W., KELEBEK, S., 2020, Magnesite-dolomite separation using potassium cetyl phosphate as a novel flotation collector and related surface chemistry, Applied Surface Science. 508, 1415191.
  • VAZIRI HASSAS, B., CALISKAN, H., GUVEN, O., KARAKAS, F., CINAR, M. CELIK, M. S., 2016, Effect of roughness and shape factor on flotation characteristics of glass beads, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 492, 88-99.
  • VRIJ, A., OVERBEEK, J. T. H. G., 1968, Rupture of thin liquid films due to spontaneous fluctuations in thickness, Journal of the American Chemical Society. 90(12), 3074–3078.
  • WANG, XIANCHEN, ZHANG, Q., 2020, Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite, Powder Technology. 371, 55–63.
  • WANG, XUMING, YIN, X., NALASKOWSKI, J., DU, H., MILLER, J. D., 2015, Molecular features of water films created with bubbles at silica surfaces, Surface Innovations. 3(1), 20–26.
  • WEBER, C., KNÜPFER, P., BUCHMANN, M., RUDOLPH, M., PEUKER, U. A., 2021, A comparison between approaches for the calculation of van der Waals interactions in flotation systems, Minerals Engineering. 167, 106804.
  • WIERTEL-POCHOPIEN, A., ZAWALA, J., 2019, Rupture of Wetting Films Formed by Bubbles at a Quartz Surface in Cationic Surfactant Solutions, Chemical Engineering and Technology. 42(7), 1371–1380.
  • XING, Y., GUI, X., CAO, Y., 2017, Effect of bubble size on bubble-particle attachment and film drainage kinetics - A theoretical study, Powder Technology. 322, 140–146.
  • YANG, H., XING, Y., SUN, L., CAO, Y., GUI, X., 2020, Kinetics of bubble-particle attachment and detachment at a single-bubble scale, Powder Technology. 370, 251–258.
  • YOON, R.-H., MAO, L., 1996, Application of Extended DLVO Theory, IV. Derivation of Flotation Rate Equation from First Principles. Journal of Colloid and Interface Science. 181, 613–626.
  • ZAWALA, J., KARAGUZEL, C., WIERTEL, A., SAHBAZ, O., MALYSA, K., 2017, Kinetics of the bubble attachment and quartz flotation in mixed solutions of cationic and non-ionic surface-active substances, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 523, 118–126.
  • ZAWALA, JAN, MALYSA, K., KOWALCZUK, P. B., 2020, On importance of external conditions and properties of the interacting phases in formation and stability of symmetrical and unsymmetrical liquid films, Advances in Colloid and Interface Science. 276, 102085.
  • ZHANG, X., HAN, Y., KAWATRA, S. K., 2021, Effects of Grinding Media on Grinding Products and Flotation Performance of Sulfide Ores, Mineral Processing and Extractive Metallurgy Review. 42(3), 172–183.
  • ZHU, Z., YIN, W., HAN, H., CAO, S., YANG, B., WANG, D., 2020, Investigation on the influence of surface roughness on magnetite flotation from the view of both particle-particle and bubble-particle interactions, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 595, 124681.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa207ea0-d964-434c-b898-da5e908c994b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.