PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy recursive relationships in relational databases

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recursive relationships are used for modelling problems coming from the real life, such as, for example, a relationship describing formal dependencies between employees of an enterprise, where creation of work groups and teams requires analysis of many elements. In conventional database systems, the precision of data is assumed. If our knowledge of the fragment of reality to be modelled is imperfect one should apply tools for describing uncertain or imprecise information. One of them is the fuzzy set theory. The paper deals with recursive relationships in fuzzy databases. The analysis is performed with the use of the theory of interval-valued fuzzy sets. A definition of a fuzzy interval recursive relationship has been presented. The paper defines different connections of entities which participate in such relationships. Operations of the extended relational algebra are also discussed.
Rocznik
Strony
35--46
Opis fizyczny
Bibliogr. 15 poz., tab., rys.
Twórcy
  • Institute of Information Technology, Lodz University of Technology
Bibliografia
  • [1] Alcade C., Burusco A., Fuentes-Gonzales, R. (2010) Interval-valued linguistic variables: an application to the L-fuzzy contexts with absent values. International Journal of General Systems, 39(3), 255–270.
  • [2] ter Bekke J.H., Bakker J.A. (2003) Modeling and Querying Recursive Data Structures Introduction, Proceedings of the Seventh International Conference on Artificial Intelligence and Soft Computing, Banff, Canada.
  • [3] ter Bekke J.H., Bakker J.A. (2003) Modeling and Querying Recursive Data Structures A Semantic Approach, Proceedings of the Seventh International Conference on Artificial Intelligence and Soft Computing, Banff, Canada.
  • [4] Campana J., Medina J., Vila M. (2014) Semantic Data Management Using Fuzzy Relational Databases. In: Pivert O., Zadrożny S. (eds.) Flexible Approaches in Data, Information and Knowledge Management. Studies in Computational Intelligence, Springer International Publishing, vol. 497, 115-140.
  • [5] Chen G. (1998) Fuzzy Logic in Data Modeling. Semantics, Constraints and Database Design. Kluwer Academic Publishers, Boston.
  • [6] Chen C., Huang S. (2006) Order fulfillment ability analysis in the supply-chain system with fuzzy operation times. International Journal of Production Economics, 101(1), 185-193.
  • [7] Dullea J., Song I., Lamprou I. (2003) An analysis of structural validity in entityrelationship modeling, Data and Knowledge Engineering, 47(2), 167–205.
  • [8] Lee H. (1999) Semantics of recursive relationships in entity-relationship model, Infromation and Software Technology, 41(13), 877-886.
  • [9] Liang, Q., Mendel, J. M. (2000) Interval Type-2 Fuzzy Logic Systems, Theory and Design. IEEE Transactions on Fuzzy Systems, 8(5), 535–550.
  • [10] Link S., Prade H. (2014) Relational database schema design for uncertain data. CDMTCS-469 Research Report, Centre for Discrete Mathematics and Theoretical Computer Science.
  • [11] Mun J., Shin M., Lee K., Jung M. (2009) Manufacturing enterprise collaboration on a goal-oriented fuzzy trust evaluation model in virtual enterprise. Computers & Industrial Engineering, 56(3), 888-901.
  • [12] Navara M., Navarova M. (2017) Principles of inclusion and exclusion for intervalvalued fuzzy sets and IF-sets. Fuzzy Sets and Systems, 324, 60-73.
  • [13] Ray P., Shahrestani S., Daneshgar F. (2005) The Role of Fuzzy Awareness Modelling in Cooperative Management. Information Systems Frontiers, 7(3), 299-316.
  • [14] Sambuc, R. (1975) Founctions Φ-floues. Application ´a l’aide au diagnostic en pathologie thyroidienne. PhD thesis, University de Marseill´e, France.
  • [15] Zadeh, L.A. (1975) The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(3), 199–249.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa16a4a3-4acb-43ec-8f2a-b8c970f7c7c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.