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Recursive relationships are used for modelling ferols coming from the real
life, such as, for example, a relationship desngbiormal dependencies between
employees of an enterprise, where creation of wookips and teams requires anal-
ysis of many elements. konventional database systems, the precision afidats-
sumed. If our knowledge of the fragment of realiiybe modelled is imperfect one
should apply tools for describing uncertain or iggise information. One of them is
the fuzzy set theoryThe paper deals with recursive relationships rzyudatabases.
The analysis is performed with the use of the thediinterval-valued fuzzy sets. A
definition of a fuzzy interval recursive relatiomsthas been presented. The paper
defines different connections of entities whichtiggpate in such relationships. Op-
erations of the extended relational algebra am@ @ilscussed.

Keywords: Fuzzy databases, interval-valued fuzty, secursive relationships, rela-
tional algebra, fixpoint operator

1. Introduction

Conventional database systems are designed withsthenption of precision
of information collected in them. The problem beesnmmore complex if our
knowledge of the fragment of reality to be modelednperfect. In such cases one
has to apply tools for describing uncertain or iegise information [4, 10]. One of
them is the fuzzy set theory. A fuzzy set (FS) geaeralization of an ordinary set.
Its definition contains a membership function whigla mappingX - [0,1], where



X denotes the universe of discourse. The precisgrditation of the membership
degree is not always possible. In such cases itbeaexpressed by means of the
closed subinterval of the unit interval [0,1]. Thésds to the concept of the inter-
val-valued fuzzy set (IVFS). The idea was propdset975 [14, 15]. Alcade et al.
defined interval-valued linguistic variables anddséd their properties [1]. Validity
of the principle of inclusion and exclusion for I8& has been investigated in [12].

So far, a great deal of effort has been devotedgaevelopment of fuzzy da-
ta models. Numerous works discuss how uncertaixistieg in databases should
be handled. Some authors proposed incorporatirgy flogic into data modeling
techniques. In particular an extension of the ymétationship model by fuzzy log-
ic has been proposed. The main elements of the Imazte presented ithe con-
text of fuzzy sets.

In the relational model entity sets and relatiopshietween them are repre-
sented in the same way — i.e. by means of relat®mslation is defined as a sub-
set of Cartesian product of attribute domains. tto$eperations in relational mod-
el is referred to as relational algebra. Inclusibfuzzy logic requires extension of
the main notions occurring in the relational modelparticular, classical opera-
tions of relational algebra must be appropriatebdified.

In database models, usually binary relationshipsuodetween entity sets.
In such relationships each entity plays a unigle. rfbhe roles of entities are clear
and so they are not defined explicitii¢hen designing, it may be necessary to de-
fine relationships which involve only one entityt &e. relationships between enti-
ties belonging to the same set. They are referoedst recursive relationships
(RRs). In this case roles of entities must be @efiexplicitly.

The problem of RRs does not occur often in thegssibnal literature. They
are usually discussed in papers dealing with thigyerelationship model. Differ-
ent approaches to design RRs have been presenf2d3dh A taxonomy of RRs
has been described in [8]. The author presentéetelift relationship structures that
that can exist in RRs and defined four types ofithia [7] theorems dealing with
cardinalities of RRs have been formulated.

Although the semantics of RRs is to some extefficdlf to capture they are
useful for modelling problems coming from the rif&. In particular one can ap-
ply them in management. An example of a RR is atiaiship describing formal
dependencies between employees of an enterprigach employee, apart from
the boss, is supervised by exactly one employee #asts a multilevel hierarchy.
At the bottom there are employees who do not sigenybody. Participation of
employees in work groups can be limited by difféi@mstraints. For example, one
can impose a constraint on the number of teamsrgspd by one employee.
These constraints determine the type of the reaursiationship. Creation of work
groups and teams in organizations requires anabjisany elements e.g. qualifi-
cations of employees and possibilities of usingrthe
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The fuzzy set theory can be also applied for modgebf cooperation between
enterprises [6,11,13]. Enterprises which coopesdite one another are elements of
a business network. The strength of a direct cdiorebetween two enterprises
can be estimated by a subinterval of [0,1]. This isase of the interval-valued
fuzzy relationship (IVFRR). Analysis of the netwazkables to determine relation-
ships between any enterprises.

In conventional procedures there are made uniqaisidas ,accept or reject”
which may lead to improper solutions. The estimmatbthe mentioned elements is
not always unique. Applying of the fuzzy set thealpws for analysis and com-
parison of different versions and for adjustingntht® new information.

The paper is organized as followde next section contains the basic notions
dealing with interval-valued fuzzy sets. Sectiopr@sents fuzzy relations and op-
erations of the extended relational algebra. Defféikinds of structures created by
entities occurring in interval-valued fuzzy relatships are defined in Section 4.
Section 5 discusses algebraic operations dealitly nglational representation of
IVRRs.

2. Interval-valued fuzzy sets

In classical set theory one can define a charatiefunction which indicates
membership of elements in sets. It is a mapping {0,1}, where X denotes the
universe of discourse. The characteristic functibthe setA takes the value 1 for
the element if e O A and O in the opposite case. However, if therenargharp
boundaries of membership the unique qualificatibalements is not always obvi-
ous. In order to express this uncertainty the Seti{has been replaced with the
interval [0,1].

Definition 1. Let X be a universe of discourse. A fuzzy eh X is defined as a
set of ordered pairs:
A={<X,1y(%) > X0 X, 1,0 X - [01]} ()

whereua(X) is a membership function.

Replacing the mappin¥ - [0, 1] with X - F([0, 1]) , whereF([0, 1]) de-
notes the set of all FSs in the interval [0, 1&de to the definition of type-2 fuzzy
sets. A particular case of this notion is the cph@é an interval-valued fuzzy set
[9]. The elements of the IVFS are assigned witls@tbsubintervals of [0,1]. The
idea of the IVFS extends the notion of the ordinfarzzy set. The assigned inter-
vals approximate the correct value of membershguess.
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Definition 2. Let X be a universe of discourse. An interval-valuedyuzetA in X
is defined as:

A={<xpu, () > xOX, 1,0 X — Int([01])} (2)

where ua(X) = [ua (X), #a,(X)] is an interval-valued membership function and

Int([0,1]) stands for the set of all closed subinténad [0,1]: Int([0,1]) = {[a, b]: a,
b O [0,1]}.

Values ofua, (X) andua,(X) are interpreted as the lower and upper membership
functions, respectively, and satisfy the followtwndition:

Ospp (X)spp, K)s 1. 3)

In order to compare interval-valued fuzzy sets lbagto establish an order re-
lations for subintervals of [0,1]. In further coderations we will consider the fol-
lowing ordering

[a_,a,]<[b ,b,] if a <b anda, <b, . 4)

If 1a (X) = ua(X) for everyx thenA is an ordinary fuzzy set. Membership functions
ua (X) andup (X) determine two ordinary fuzzy sets:

A ={<X g () >IXOX, gy 1 X - [O1]}
A, ={< Xy, (9 > XD X, 4y, 0 X~ [01]}

The support ofA - the classical set of elements that belonghtith non-zero
membership degrees - is determined by suppors ahdA :

Supf(A),. =supf(A ) ={x: u, (x) >0} ,
SUPI(A)y =SUPHA,) ={X: iy, (X) >0} .

From (5) and (6) we can conclude that sépp( supp®)y. Other characteristics
can be determined in the similar way.

(5)

(6)

3. Fuzzy relations

In the fuzzy entity-relationship model fuzziness @ecur at three levels [5]:
a) the level of types reflecting partial belongiega of the given type to the model,
b) the level of entities and relationships reflegtipartial belongingness of ele-
ments to their types, c) the level of attributefferting fuzzy values of them. The
presented considerations deal with the second.level

In the relational model data is represented byewiplihich are elements of re-
lations. Allowing for subintervals of [0,1] to apgreas membership degrees of tu-
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ples one arrives at interval-valued fuzzy relatighv$-R). An IVFR is an interval-
valued fuzzy set on the Cartesian product of attebdomains. For example an
IVFR regarding projects may look like relation LARGPROJECTS in Table 1.

Table 1.Relation LARGE_PROJECTS

P# NAME BUDGET TYPE H

P1 Credit 110 000 Banking [1,1]
P2 Finn 60 000 Accounting [0.8, 0.9]
P3 Policy 40 000 Insurance [0.4, 0.6]
P4 Broker 30 000 Stock _Exchange [0.3,0.5
P5 Visa 200 000 Banking [1,1]
P6 Balance 20 000 Accounting [0.2,0.3
P7 Agent 50 000 Insurance [0.7,0.8

Classical operations of relational algebra musextended by defining mem-
bership degrees for final relations. Some of therafions are defined below. Ligt
andS be interval-valued fuzzy relations with memberstiggrees|r (r), ur,(r)] O

[0,1] and L (S), us,(s)] U [0,1], wherer ands denote tuples dR andS respectively.
Union: RO Sis an IVFR containing tuples which belongRmor S The member-
ship degree of a tupteof R OS equalsuros(t) = [uros (1), uros,(t)], where
Heos, () =max(ty (0, 4s €)) » Heos, ) =max(ug, (), 4, €)) - (7)
Intersection:R n Sis an IVFR containing tuples which belong Roand S. The
membership degree of a tuplef R n Sequalsur.s(t) = [urag (1), 1ras,(t)], Where
Hens O =min (ug @), 4s €))  Ur.g, ©)=min (g, ©), 45, ¢)) - (8)

Difference:R — Sis an IVFR containing tuples which belongRand do not be-
long toS. The membership degree of a tuplef R — S equalsurt) = [urg (1),

Urs,(D)], where
Hes ©)=min(ue €), 1= 415, €)) , es, ©)=min(ig ¢), 1-45 ©). (9

Selection:gy(R) is an IVFR containing tuples & which satisfy a fuzzy condition
W. Let uw(t) = [uw, (1), uw,(t)] be an interval expressing the fulfilment degoé&V.

Thus the membership degree of a tuptd gw(R) equalsug, ® (1) = [uay, @ (1),
Uay®y(D], where

Moy my, ©)=min(ug ), ty €)) + Mo, m, () =minizg, €), 44, €)) - (10)

Projection:[x(R) is an IVFR oveiX, whereX is a set of attributes, witla(t) =
[1ny@L (1), unx Ru(D], Where
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Hn, ), €)= SURG-0Mr, €) 5 Hnyr), €)= SUR)=rx) MR, () - (11)

Natural join:R(X, Y) * Y, 2) is an IVFR of the schem8CH= {X, Y, Z}. The
membership degree of a tuplef R* Sequalgur«(t) = [ur+s (1), ur+s,(1)], where

r(y) = (Y),

Urs O =Min(y (). ls 6)) + Hes O =min(uy (. pg () . 0

4. Fuzzy interval-valued recursive relationships

A graphical representation of the recursive retetiop in the entity-
relationship model is shown in Figure 1. In ordedistinguish entities of the entity
setE which participate in the relationshipthere have been defined roles and
Rs. Numbers in brackets denote cardinalities agb) is a minimal (maximal)
number of entities dE which fulfill the roleR, with respect to one entity &.

Ra(a,b)

z <R

Rs(c,d)

Figure 1. Recursive relationship

An interval-valued fuzzy recursive relationship ARR) can be defined as follows:

R={<e.e,/:(e.6)>e,6UE g 76, EXE - Int(O1])} . (13)

The order of entities defines their rolesRnin the relational model an IVFRR is
represented by relatid®(Ra.K, Rs.K, ugr), whereK denotes the key &. The mem-
bership functionug(e;, &) can express the strength of the relationshipstmates
the degree of uncertainty. Tuples Rfrepresent direct connections between enti-
ties. From (13) one can derive pairs of entitiesciwrare connected indirectly. If
there exist tupleses, e, ur(er, &)> and <&, e;, ur(e, €)> then there exist a rela-
tionship between entitiess ande; with g (€1, €3) = Min(ug (€1, &), ur (€2 €3)) and

ey (€1, €3) = Min(ug (€1, &), ry(€2, €3)).

According to cardinalities one can distinguish fhiéeowing types of recursive
relationships:
a) 1:1 with possible cardinalities: (0,1)(0,1), (O1LY), (1,1)(0,1), (1,1)(1,1),
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b) 1:N with possible cardinalities: (0,N)(0,1), (O,0)1), (1,N)(0,1),
(1,N)(1,1),(0,1)(0,N), (0,1)(1.N), (1,1)(O.N), (1,1)(1,N),
c) M:N with possible cardinalities: (0,N)(0,M), (0,N\)M), (1,N)(0,M),
(1,N)(1,Mm).
The structure of recursive relationships can begmted graphically as single lines
for 1:1 type, hierarchies for 1:N type and netwdidsM:N type. If entities cannot
fulfill both roles the structure of the relationgldontains two levels.

Definition 3. Let f andg be entities of the sdf. Let a be a subinterval of [0,1].
Entities f and g are a-connected with respect to the relationsRpdenoted by
fCro0, if ur(f, 9) = a or there exists a finite sequergee,,..., €, 0 E such that

Ur(f8)2za, ux(e.6)2a,.. . Ux(e.4,6,) 20, U(e,9)z2a .  (14)

Definition 3 deals with entities occurring in thanse path. In hierarchical
structures between two elements there exists gxaott route containing one or
two paths. Let us consider two paiesf) and €, g) of a-connected entities. Thus,
eCGf andeGg,g. Entitiesf andg occur in the same hierarchy. For this case one can
define ang-hierarchical connection.

Definition 4. Let f andg be entities of the sdf. Let a be a subinterval of [0,1].
Entitiesf and g are a-hierarchically connected with respect to the refeghip R,
denoted byHRg.g, if fCr,g Or there exists an entigysuch that eG,f andeG.g.

In more complex structures there can exist moréembetween two elements. A
route can contain more than one hierarchical cdiored~or this case one can de-
fine ana-network connection.

Definition 5. Let f andg be entities of the sdf. Let a be a subinterval of [0,1].
Entitiesf andg are a-network connected with respect to the relationghigenoted
by fNRr.g, if fHr,Q Or there exists a finite sequergee,,..., e, 0 E such thatHg.e;,
eHreey, ..., e1HRE, ande,Hg,g or gCreen.

5. Recursive operations

Let us consider an IVFR(A,B) which represents an interval-valued recursive
relationship. Values of attributésandB are identifiers of related entities.

Let ty(a, X) andty(a, y) be two tuples oR. This means that entities identified
by x andy fulfill the same role with respect to the othetigridentified bya.

Identifiersx andy can be obtained by means of the following openatio
T(X,Y) =T XY (pR(A,X) (R * yay pR(A,Y)(R)) ) (15)
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wherep is a rename operator. The membership degies = [ur,(S), ur,(9)] of a
tuplet (x,y) O T equals:

Hr (X, y) =max, min(ug (a,X), 4y @.y))
Hr, (X y) =max, min(ug (@,X), g, @.Y)) -

Let ty(x, 2 andty(z y) be two tuples oR. This means that entity fulfills a
certain role with respect toandz fulfills the same role with respect yo Thus en-
tities x andy are connected indirectly. In order to get pairenfities which are
connected in this way one should also apply the goid projection operators. The
following expression allows to find pairs of ergiix andy which are connected by
one intermediate entity

T(X,Y)=T X,Y (pR(X,Z) (R* Przy) (R) . (17)

The route between entitiesandy contains two edges x> and <,>. In net-
work connections there can exist more than onesrbatweerx andy. Thus, the
membership degree of a tupléy) O T equals:

Hr (X, y) =max, min(ig (X2), 4g (2,Y))
Hr, (X, y) =max, min(ug (%2), 4z, (2,Y)) -

In order to receive all pairs of entities,¥> which are connected by more interme-
diate entities one should solve the following eiprat

S(U,V) = Pruv) (n AV (pR(A,U) (R*SU,Vv))) O Pruv) (R) . (19)

The smallest relation which satisfies (19) is deiaed by the fixpoint operator
(FP):

S(U.V) =FPE = Pry vy (M av (Prany (R * SULV)) U Py (R) . (20)

The result is obtained by means of the iteratixpdint process. In each iteration
new tupless of S are created. They denote pairs of connected estifihe algo-
rithm of FP terminates when no new tuplesSafre created as a result of the subse-
quent iteration. IR is a fuzzy relation for each iteration one musiedaine the
membership degree. L&(u,v) be a set of routes between entities andv. For
each routes J C(u,v) one must determine values @f (s) = [us (9), us,()]. The

final membership degree(u,v) = [ug (u,v), us,(u,v)] equals the maximal value:
Hs, (U,V) =MaXgcy, ) Ms () 0 Hs, (UV) =MaXgey Mg, (S) - (21)

Example 1.RelationR (table 2) presents an IVFRR. Entities which pgstte in
the relationship form a structure shown in Figure 2

(16)

(18)
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Table 2.Relation R

olo|o|o|o|w|w|>
o|lo|lalalolo|oc|®

T EEFEEFEE

The membership degrefsare expressed by subintervals of [0,1]. ugt,
note the following interval:

Hijyin =M i Mg, 1 Where (22)
ﬂ@lij---jn)L = min(’LllL”leL’""ﬂnL ) ! ﬂ¢1j2v---jn)u :min(’Lllu ’ﬂzu ’""ﬂrb )

in de-

Figure 2. Structure of the IVFRR — Example 1

Table 3 presents results of the operation (15)), (16

Table 3.Relation T

X Y H
b c Mo
C d 2<%
d € kbe

For the operation (20), (21) three iterations stidad performed. The first iteration
finds pairs of entities connected by one intermiedéntity. There exist the follow-
ing routes: dabcpz>, <abdpis>, <acdp,s>, <aceps>, <bcdpzs>, <bcepss>,
<bdeus7>, <cdepe>. The result is shown in table 4.
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Table 4.Relation S after the first iteration

U \% U

a b Ly

a c [maX(I.iL, H13|_), max(wuv ul3u)]
b C e

b d [max(ulL! H35|_), max(uluv u35u)]
C d s

c e [Mmax(ja,, psr), max(ihy, Hsry)]
d e Ly

a d [Mmax(Ma, Hos ), Max(fg,, Hos))]
a e %6

b e

[max(ke, , Ma7,), Max(ibe,, Mazy)]

The following routes with two intermediate entitia® obtained by the second iter-
ation: <abcdpyzs>, <abcelyze>, <abdepys7, <acdel,s>, <bcdepss7>. The third
iteration gives one routeabcdell;ss7>. Table 5 presents the final result.

Table 5.Relation S

U
H
[maX(I.iL, ul3|_)! max(wuv ul3u)]

2]
[max(ulL: “35|_)! maX(MUv “35U)]

[max(i4, , Hs7,), max(i,, Hsz,)]

W
[max(da , Mos s Hazs ), MaXx(Hay, Hosys Hassy)]

[max(lde , Hase s Maaz, Mosz,Hassg ), MaX(ibey, Masg, Maazy, MeszyHissy)]
[maX(HﬁL! p*47|_1u357|_ )! maX(HBGUa p*47U1 “357u)]

oclo|lo|la|lo|lo|T|o|o | |C
olo|lalo|lojlalalo]o|lc<

4. Conclusion

In the paper properties of interval-valued fuzzgurmsive relationships, their
representation in fuzzy relational databases asfgetive operations of the ex-
tended relational algebra have been considerech gaic of related entities is as-
signed with a subinterval of [0,1]. For processofgrecursive data an extended
fixpoint operator has been applied. According tlesoof entities there have been
defined different kinds of fuzzy connections octgrin IVFRRs. The presented
theory is planned to be applied in real life talke supporting collaboration in
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enterprise networks, for example. Moreover, one@aend the considerations by
application of type-2 fuzzy sets. Another line ofure work is taking into account
more than two roles fulfilled by entities in thevesive relationship.
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