PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary results of spatial distribution of uranium and thorium in soil profi les near a uranium industrial site, Guangdong province, China

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference „Radon in the Environment” (2nd ; 25-29.05.2015 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Four soil profiles were collected from locations with different distances (5, 50, 250 and 1000 m) from a uranium mill tailings dam, Guangdong province, China, to investigate the pollution status of the soil in mining/ milling-related areas based on the contents of uranium (U) and thorium (Th), thus to understand the impacts of uranium industrial activities to the surroundings. The U and Th concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) after conventional HF-HNO3-HClO4 digestion procedures. The results indicate that the soils within 50 m from uranium tailing were severely contaminated; those in 250 and 1000 m soil samples were observed to be with local background level even though these in 250 m had slightly higher U/Th ratios. Uranium concentrations varied from 5.50 ± 0.27 to 160.55 ± 8.03 mg/kg, with maximum values recorded in an intermediate layer of the 5-m distance soil profile. In comparison, the concentration of Th ranged from 6.02 ± 0.30 to 84.71 ± 4.24 mg/kg, with maximum values observed in the top layer of the 1000-m distance soil profile. The U/Th ratio varied from 0.15 to 11.99 compared with 0.20, 0.22 and 0.26 of the average for Guangdong province, national China and the world, respectively. The mean U/Th of four soil profiles showed a reduction with distance from the uranium mill tailing dam, suggesting the relatively large magnitude of uranium elevation in soils within limited distances.
Słowa kluczowe
Czasopismo
Rocznik
Strony
367--371
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • School of Environmental Science and Engineering, Guangzhou University and Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, 230 Waihuan West Str., 510006 Guangzhou, China
autor
  • Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, 230 Waihuan West Str., 510006 Guangzhou, China, Tel.: +86 20 3936 6937, Fax: +86 20 3936 6946
autor
  • Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, 230 Waihuan West Str., 510006 Guangzhou, China, Tel.: +86 20 3936 6937, Fax: +86 20 3936 6946
autor
  • School of Environmental Science and Engineering, Guangzhou University and Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, 230 Waihuan West Str., 510006 Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University and Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, 230 Waihuan West Str., 510006 Guangzhou, China
autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Str., 550081 Guiyang, China
autor
  • Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, 230 Waihuan West Str., 510006 Guangzhou, China, Tel.: +86 20 3936 6937, Fax: +86 20 3936 6946
autor
  • Guangdong Provincial Academy of Environmental Science, 335 Middle Dongfeng Str., 510045 Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University and Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, 230 Waihuan West Str., 510006 Guangzhou, China
Bibliografia
  • 1. Landa, E. R., & Gray, J. R. (1995). US Geological Survey research on the environmental fate of uranium mining and milling wastes. Environ. Geol., 26, 19–31. DOI: 10.1007/BF00776028.
  • 2. Lovley, D. R., & Phillips, E. J. P. (1992). Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol., 26, 2228–2234. DOI: 10.1021/es00035a023.
  • 3. Mkandawire, M., & Dudel, E. G. (2005). Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci. Total Environ., 336, 81–89. DOI: 10.1016/j.scitotenv.2004.06.002.
  • 4. Tykva, R., & Podracká, E. (2005). Bioaccumulation of 226Ra in the plants growing near uranium facilities. Nukleonika, 50(Suppl. 1), S25–S27.
  • 5. Liu, J., Wang, J., Li, H. C., Shen, C. C., Chen, Y. H., Wang, C. L., Ye, H. Z., Long, J. Y., Song, G., & Wu, Y. J. (2015). Surface sediment contamination by uranium mining/milling activities in South China. Clean-Soil Air Water, 43, 414–420. DOI: 10.1002/clen.201300297.
  • 6. Wang, J., Liu, J., Li, H. C., Song, G., Chen, Y. H., Xiao, T. F., Qi, J. Y., & Zhu, L. (2012). Surface water contamination by uranium mining/milling activities in Northern Guangdong Province, China. Clean-Soil Air Water, 40, 1357–1363. DOI: 10.1002/clen.201100512.
  • 7. Wang, J., Liu, J., Zhu, L., Qi, J. Y., Chen, Y. H., Xiao, T. F., Fu, S. M., Wang, C. L., & Li, J. W. (2012). Uranium and thorium leached from uranium mill tailing of Guangdong province, China and its implication for radiological risk. Radiat. Prot. Dosim., 152, 215–219.DOI: 10.1093/rpd/ncs229.
  • 8. Shi, W. M., Yao, J., & Yan, F. (2009). Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South--Eastern China. Nutr. Cycl. Agroecosys., 83, 73–84.DOI: 10.1007/s10705-008-9201-3.
  • 9. Environmental Monitoring Station of China. (1990). Background values of soil elements in China. Beijing: China Environmental Science Press (in Chinese).
  • 10. Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.
  • 11. Xie, H. Y., Hu, J. S., Yin, J., & Ding, D. X. (2014). Plant composition in certain uranium tailings area in China and their accumulation on uranium. Atom. Energy Sci. Technol., 48, 1954–1959 (in Chinese).
  • 12. Bellis, D. J., Ma, R., & Mcleod, C. W. (2001). Characterisation of airborne uranium and thorium contamination in northern England through measurement of U, Th and 235U/238U in tree bark. J. Environ. Monit., 3, 198–201. DOI: 10.1039/B009220G.
  • 13. Tagami, K., & Uchida, S. (2006). Use of a natural U/Th concentration ratio for estimation of anthropogenic uranium concentration in Japanese agricultural soils due to application of phosphatic fertilizers. Radioisotopes, 55, 71–78.
  • 14. Sartandel, S. J., Jha, S. K., Bara, S. V., Tripathi, R. M., & Puranik, V. D. (2009). Spatial distribution of uranium and thorium in the surface soil around proposed uranium mining site at Lambapur and its vertical profile in the Nagarjuna Sagar Dam. J. Environ. Radioact., 100, 831–834. DOI: 10.1016/j. jenvrad.2009.06.005.
  • 15. Chandrasekaran, A., Ravisankar, R., Senthilkumar, G., Thillaivelavan, K., Dhinakaran, B., Vijayagopal, P., Bramha, S. N., & Venkatraman, B. (2014). Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt. J. Basic. Appl. Sci., 1, 38–48. DOI: 10.1016/j.ejbas.2014.02.001.
  • 16. Gao, Y., Shao, Z., & Xiao, Z. (2015). U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J. Radioanal. Nucl. Chem., 303, 867–876. DOI: 10.1007/s10967-014-3385-6.
  • 17. Ivanov, P., Griffiths, T., Bryan, N. D., Bozhikov, G., & Dmitriev, S. (2012). The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels. J. Environ. Monit., 14, 2968–2975. DOI: 10.1039/C2EM30512G.
  • 18. Joseph, C., Schmeide, K., Sachs, S., Brendler, V.,Geipel, G., & Bernhard, G. (2011). Sorption of uranium (VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water. Chem. Geol., 284, 240–250. DOI: 10.1016/j. chemgeo.2011.03.001.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa13d1cb-a63c-4f11-8568-f5cfc87eaa8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.