PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of TiO2 NPs catalyst and packing material in removal of phenol from wastewater using an ozonized bubble column reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phenol is present as a highly toxic pollutant in wastewater, and it has a dangerous impact on the environment. In the present research, the phenol removal from wastewater has been achieved using four treatment methods in a bubble column reactor (treatment by ozone only, using packed bubble column reactor with ozone, utilizing ozone with TiO2 NPs catalyst in the reactor without packing, and employing ozone with TiO2 NPs in the presence of packing). The effects of phenol concentration, ozone dosage, TiO2 NPs additions, and contact time on the phenol removal efficiency were determined. It was found that at a contact time of 30 min, the phenol removal was 60.4, 74.9, 86.0, and 100% for the first, second, third, and fourth methods, respectively. The results indicated that the phenol degradation method using catalytic ozonation in a packed bubble column with TiO2 NPs is the best treatment method. This study demonstrated the advantages of using packing materials in a bubble column reactor to enhance the mass transfer process in an ozonation reaction and then increase the phenol removal efficiency. Also, the presence of TiO2 NPs as a catalyst improves the ozonation process via the production of hydroxyl routs. Additionally, the reaction kinetics of ozonation reaction manifested that the first order model is more applicable for the reaction. Eventually, the packed bubble column reactor in the presence of TiO2 NPs catalyst provided a highperformance removal of phenol with a high economic feasibility.
Twórcy
  • Department of Chemical Engineering, University of Technology, Iraq
  • Department of Chemical Engineering, University of Technology, Iraq
  • Department of Chemical Engineering, University of Technology, Iraq
Bibliografia
  • [1] S. Varjani, R. Joshi, V.K. Srivastava, H.H. Ngo, W. Guo, Treatment of wastewater from petroleum industry: current practices and perspectives, Environ. Sci. Pollut. Res. 27 (2020) 27172–27180. https://doi.org/10.1007/s11356-019-04725-x.
  • [2] M.H. El-Naas, M.A. Alhaija, S. Al-Zuhair, Evaluation of a three-step process for the treatment of petroleum refinery wastewater, J. Environ. Chem. Eng. 2 (2014) 56–62. https://doi.org/10.1016/j.jece.2013.11.024.
  • [3] Treatment of petroleum wastewater by conventional and new technologies A review, Glob. NEST J. 19 (2017) 439–452. https://doi.org/10.30955/gnj.002239.
  • [4] A. Prasetyaningrum, W. Widayat, B. Jos, Y. Dharmawan, R. Ratnawati, UV irradiation and ozone treatment of κ-carrageenan: kinetics and products characteristics, Bull. Chem. React. Eng. Catal. 15 (2020) 319–330. https://doi.org/10.9767/bcrec.15.2.7047.319-330.
  • [5] K.A. Mohamad Said, A.F. Ismail, Z. Abdul Karim, M.S. Abdullah, A. Hafeez, A review of technologies for the phenolic compounds recovery and phenol removal from wastewater, Process Saf. Environ. Prot. 151 (2021) 257–289. https://doi.org/10.1016/j.psep.2021.05.015.
  • [6] W. Duan, F. Meng, H. Cui, Y. Lin, G. Wang, J. Wu, Ecotoxicity of phenol and cresols to aquatic organisms: A review, Ecotoxicol. Environ. Saf. 157 (2018) 441–456. https://doi.org/10.1016/j.ecoenv.2018.03.089.
  • [7] W.F. Elmobarak, B.H. Hameed, F. Almomani, A.Z. Abdullah, A review on the treatment of petroleum refinery wastewater using advanced oxidation processes, Catalysts. 11 (2021) 782. https://doi.org/10.3390/catal11070782.
  • [8] M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review, Chem. Eng. J. 284 (2016) 582–598. https://doi.org/10.1016/j.cej.2015.09.001.
  • [9] R. Ratnawati, E. Enjarlis, Y.A. Husnil, M. Christwardana, S. Slamet, Degradation of phenol in pharmaceutical wastewater using TiO2/Pumice and O3/active carbon, Bull. Chem. React. Eng. Catal. 15 (2020) 146–154. https://doi.org/10.9767/bcrec.15.1.4432.146-154.
  • [10] Z.Y. Shanian, M.F. Abid, K. Suker, Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor, Desalin. WATER Treat. 210 (2021) 22–30. https://doi.org/10.5004/dwt.2021.26581.
  • [11] V.N. Lima, C.S.D. Rodrigues, R.A.C. Borges, L.M. Madeira, Gaseous and liquid effluents treatment in buble column reactors by advanced oxidation processes: A review, Crit. Rev. Environ. Sci. Technol. 48 (2018) 949–996. https://doi.org/10.1080/10643389.2018.1493335.
  • [12] Y.. Chen, X. Duan, X. Zhou, R. Wang, S. Wang, N. Ren, S.H. Ho, Advanced oxidation processes for water disinfection: Features, mechanisms and prospects, Chem. Eng. J. 409 (2021) 128207. https://doi.org/10.1016/j.cej.2020.128207.
  • [13] A.D. Thamir, K.A. Sukkar, A. A. Ati, Improve the process of enhancing oil recovery (EOR) byapplying nanomagnetic cobalt ferrite nanoparticles, Eng. Technol. J. 35 (2017) 872–877. https://doi.org/10.30684/etj.35.9A.1.
  • [14] C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review, Chem. Eng. J. Adv. 3 (2020) 100031. https://doi.org/10.1016/j.ceja.2020.100031.
  • [15] S.S. Deshpande, J. Walker, J. Pressler, D. Hickman, Effect of packing size on packed bubble column hydrodynamics, Chem. Eng. Sci. 186 (2018) 199–208. https://doi.org/10.1016/j.ces.2018.04.045.
  • [16] K. A. Sukkar, S.A. Duha, A. A. Hussein, R.M. Mohammad, Synthesis and characterization hybrid materials (TiO 2 /MWCNTS) by chemical method and evaluating antibacterial activity against common microbial pathogens, Acta Phys. Pol. A. 135 (2019) 588–592. https://doi.org/10.12693/APhysPolA.135.588.
  • [17] Y. Tang, G. Luo, Z. Cheng, Packing size effects on the liquid circulation property in an external‐loop packed bubble column, AIChE J. 68 (2022). https://doi.org/10.1002/aic.17851.
  • [18] H. Bader, Determination of ozone In water by the indigo method: A submitted standard method, Ozone Sci. Eng. 4 (1982) 169–176. https://doi.org/10.1080/01919518208550955.
  • [19] H. Bader, J. Hoigné, Determination of ozone in water by the indigo method, Water Res. 15 (1981) 449–456. https://doi.org/10.1016/0043-1354(81)90054-3.
  • [20] Z. Honarmandrad, N. Javid, M. Malakootian, Removal efficiency of phenol by ozonation process with calcium peroxide from aqueous solutions, Appl. Water Sci. 11 (2021) 14. https://doi.org/10.1007/s13201-020-01344-7.
  • [21] J.M. Park, C.M. Kim, S.H. Jhung, Melamine/polyaniline-derived carbons with record-high adsorption capacities for effective removal of phenolic compounds from water, Chem. Eng. J. 420 (2021) 127627. https://doi.org/10.1016/j.cej.2020.127627.
  • [22] R. Zhao, Y. Li, J. Ji, Q. Wang, G. Li, T. Wu, B. Zhang, Efficient removal of phenol and p-nitrophenol using nitrogen-doped reduced graphene oxide, Colloids Surfaces A Physicochem. Eng. Asp. 611 (2021) 125866. https://doi.org/10.1016/j.colsurfa.2020.125866.
  • [23] G. Nirmala, T. Murugesan, K. Rambabu, K. Sathiyanarayanan, P.L. Show, Adsorptive removal of phenol using banyan root activated carbon, Chem. Eng. Commun. 208 (2021) 831–842. https://doi.org/10.1080/00986445.2019.1674839.
  • [24] P. Gharbani, A. Mehrizad, Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions, J. Saudi Chem. Soc. 18 (2014) 601–605. https://doi.org/10.1016/j.jscs.2012.07.013.
  • [25] E.M. Lakhdissi, A. Fallahi, C. Guy, J. Chaouki, Effect of solid particles on the volumetric gas liquid mass transfer coefficient in slurry bubble column reactors, Chem. Eng. Sci. 227 (2020) 115912. https://doi.org/10.1016/j.ces.2020.115912.
  • [26] J. Wang, H. Chen, Catalytic ozonation for water and wastewater treatment: Recent advances and perspective, Sci. Total Environ. 704 (2020) 135249. https://doi.org/10.1016/j.scitotenv.2019.135249.
  • [27] S.J. Wang, J. Ma, Y.X. Yang, J. Zhang, T. Liang, Degradation and transformation of organic compounds in songhua river water by catalytic ozonation in the presence of TiO 2 /Zeolite, Ozone Sci. Eng. 33 (2011) 236–242. https://doi.org/10.1080/01919512.2011.560561.
  • [28] Z.M. Shakor, A.A. AbdulRazak, K.A. Sukkar, A detailed reaction kinetic model of heavy naphtha reforming, Arab. J. Sci. Eng. 45 (2020) 7361–7370. https://doi.org/10.1007/s13369-020-04376-y.
  • [29] F.K. Dawood, N.N. Abdulrazzaq, Direct oxidation of antibiotics from aqueous solution by ozonation with microbubbles, J. Phys. Conf. Ser. 1973 (2021) 012157. https://doi.org/10.1088/1742-6596/1973/1/012157.
  • [30] M.K. Mohsin, A.A. Mohammed, Catalytic ozonation for removal of antibiotic oxy-tetracycline using zinc oxide nanoparticles, Appl. Water Sci. 11 (2021) 9. https://doi.org/10.1007/s13201-020-01333-w.
  • [31] R. Shahbazi, A. Payan, M. Fattahi, Preparation, evaluations and operating conditions optimization of nano TiO2 over graphene based materials as the photocatalyst for degradation of phenol, J. Photochem. Photobiol. A Chem. 364 (2018) 564–576. https://doi.org/10.1016/j.jphotochem.2018.05.032.
  • [32] I.I.N. Etim, P.C. Okafor, R.A. Etiuma, C.O. Obadimu, Solar photocatalytic degradation of phenol using cocos nucifera (coconut) shells as adsorbent, J. Chem. Biochem. 3 (2015). https://doi.org/10.15640/jcb.v3n1a3.
  • [33] W. Xiong, W. Cui, R. Li, C. Feng, Y. Liu, N. Ma, J. Deng, L. Xing, Y. Gao, N. Chen, Mineralization of phenol by ozone combined with activated carbon: Performance and mechanism under different pH levels, Environ. Sci. Ecotechnology. 1 (2020) 100005. https://doi.org/10.1016/j.ese.2019.100005.
  • [34] S. T. Alnasrawy, G. Y. Alkindi, T. M. Albayati, Removal of high concentration phenol from aqueous solutions by electrochemical technique, Eng. Technol. J. 39 (2021) 189–195. https://doi.org/10.30684/etj.v39i2A.1705.
  • [35] P. Yang, S. Luo, H. Liu, W. Jiao, Y. Liu, Aqueous ozone decomposition kinetics in a rotating packed bed, J. Taiwan Inst. Chem. Eng. 96 (2019) 11–17. https://doi.org/10.1016/j.jtice.2018.10.027.
  • [36] K.A. Sukkar, F.. K. Al-Zuhairi, E.A. Dawood, Evaluating the influence of temperature and flow rate on biogas production from wood waste via a packed-bed bioreactor, Arab. J. Sci. Eng. 46 (2021) 6167–6175. https://doi.org/10.1007/s13369-020-04900-0.
  • [37] R. Sridar, U.U. Ramanane, M. Rajasimman, ZnO nanoparticles – synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater, Environ. Nanotechnology, Monit. Manag. 10 (2018) 388–393. https://doi.org/10.1016/j.enmm.2018.09.003.
  • [38] H. Iboukhoulef, R. Douani, A. Amrane, A. Chaouchi, A. Elias, Heterogeneous fenton like degradation of olive mill wastewater using ozone in the presence of BiFeO3 photocatalyst, J. Photochem. Photobiol. A Chem. 383 (2019) 112012. https://doi.org/10.1016/j.jphotochem.2019.112012.
  • [39] W. Wang, H. Yao, L. Yue, Supported-catalyst CuO/AC with reduced cost and enhanced activity for the degradation of heavy oil refinery wastewater by catalytic ozonation process, Environ. Sci. Pollut. Res. 27 (2020) 7199–7210. https://doi.org/10.1007/s11356-019-07410-1.
  • [40] G.M. Salcedo, L. Kupski, J.L. de Oliveira Arias, S.C. Barbosa, E.G. Primel, Bojuru sand as a novel catalyst for refinery wastewater treatment and phenol degradation by heterogeneous photo catalysis, J. Photochem. Photobiol. A Chem. 402 (2020) 112796. https://doi.org/10.1016/j.jphotochem.2020.112796.
  • [41] M.R. El-Aassar, O.M. Ibrahim, F.S. Hashem, A.S.M. Ali, A.A. Elzain, F.M. Mohamed, Fabrication of Polyaniline@β-cyclodextrin Nanocomposite for Adsorption of Carcinogenic Phenol from Wastewater, ACS Appl. Bio Mater. (2022). https://doi.org/10.1021/acsabm.2c00581.
  • [42] M.A. Zazouli, M. Yousefi, F. Ghanbari, E. Babanezhad, Performance of photocatalytic ozonation process for pentachlorophenol (PCP) removal in aqueous solution using graphene-TiO2 nanocomposite (UV/G-TiO2/O3), J. Environ. Heal. Sci. Eng. 18 (2020) 1083–1097. https://doi.org/10.1007/s40201-020-00529-1.
  • [43] M. Al-Nuaim, A.A. Al-Wasiti, Z.Y. Shnain, A.K. Al-Shalal, The combined effect of bubble and photo catalysis technology in BTEX removal from produced water, Bull. Chem. React. Eng. Catal. 17 (2022) 577–589. https://doi.org/10.9767/bcrec.17.3.15367.577-589.
  • [44] M.H. Mahdi, T.J. Mohammed, J.A. Al-Najar, Removal of tetracycline antibiotic from wastewater by fenton oxidation process, Eng. Technol. J. 39 (2021) 260–267. https://doi.org/10.30684/etj.v39i2A.1915.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa0f0428-b448-48b9-9d96-20217e885237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.