
Measurement Automation Monitoring, 2018, no. 03, vol. 64, ISSN 2450-2855    67 
 

Cezary WERNIK, Grzegorz ULACHA   
WEST POMERANIAN UNIVERSITY OF TECHNOLOGY SZCZECIN 
FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY 
52 Żołnierska St., 71-210 Szczecin 

   

 

An implementation of Rice coder on AVR platform 
 

Abstract 

 
In this paper the features of the Rice code and its performance by looking 
at the requirements for hardware resources are presented. The estimated 
bandwidth of the encoder was examined. An example implementation of 
the Rice coder on the AVR platform was also presented, using the Arduino 
UNO boards for this. 
  
Keywords: Rice code, Arduino application for coding, AVR, 

programmable devices. 

 

1. Introduction 
 

Universal codes are used to represent sources with an infinite 

number of symbols, most often treated as a set of positive natural 

numbers n [7]. For some applications, this set also includes zero. 

Until designing codes with an infinite number of source symbols, 

two general assumptions are made. Firstly, the coding method 

should be able to be described in the form of an algorithm without 

the use of tables containing code words (in the case of codes with 

a finite number of symbols, the source code words can be 

described using a table or e.g. binary trees). Secondly, p(m)  p(n) 

for m < n. Depending on the source distribution, different codes 

are used. The simplest of codes is the Elias code family [7]. They 

are a code  (unary code), a code  (binary code) and a few 

defined in successive letters of the Greek alphabet. Elias and 

Levenstein described in the works [1], [3] variations of gamma 

codes (, ’). The ’ code is sometimes referred to as the 

Exponential Golomb code [5] and is used for e.g. in the tenth part 

of the MPEG4 standard referred to as H.264. 

In 1966 Solomon W. Golomb presented in [2] the basic 

assumptions and examples of the family of codes which were 

described as Golomb codes. This universal code is used to 

represent non-negative integers n, whose probability of occurrence 

is consistent with the geometric distribution 
nppnG  )1()( . 

For such a distribution after selecting the appropriate parameters 

(based on value the parameter p) the Golomb code becomes  

a code convergent with the Huffman code, and this one meets the 

definition of the optimal code among the codes described using 

binary trees [6]. 

Assuming the constant value of the parameter p algorithm for 

determining the Golomb code words is quite simple although it 

requires the use of multiplication and division operations. After 

introducing further simplifications in the algorithm is possible to 

get rid of the multiplication and division operations. Such features 

have Rice's code being a special case of Golomb codes [4], [7]. 

 

2. Features of Rice code 
 

With the geometric distribution we deal e.g. in the coding of 

prediction errors in systems of lossless compression of images and 

audio signals [8], [9]. The second popular example is the binary 

source S = {0, 1} in which the stream of zeros and ones can be 

interpreted as a set of words in unary code (sequences of zeros 

terminated by one assuming that there are more zeros than ones, 

then p = p(0)  p(1)). For example, bit sequence 00100001011 can 

be converted to four natural numbers {2, 4, 1, 0} describing 

individual unary words. Each of these numbers can be coded in  

a highly efficient way using the Rice code. This second type of 

data will be further considered in this work. 

 

After encoding such a binary input stream with the Rice code we 

get the output bit sequence in which its average number of bits LR 

per one bit of input data is given by the formula: 

 

 

















k

p
kpLR

21

1
)1( , (1) 

 

where the parameter k being a non-negative integer is called  

a group number which is determined in the form of the probability 

function p:  

 

 

















 


p

k
2

2

2
log

2

15
log

log . (2) 

 

The p-value ranges for the consecutive group numbers k  8 are 

shown in Table 1. In Figure 1 the dependence of the mean LR of 

the Rice code in function p are presented. 

 
Tab. 1. The p-value ranges for consecutive group numbers k ≤ 8 

 

k p 

0 0,50000 — 0,61803 

1 0,61803 — 0,78615 

2 0,78615 — 0,88665 

3 0,88665 — 0,94162 

4 0,94162 — 0,97037 

5 0,97037 — 0,98507 

6 0,98507 — 0,99251 

7 0,99251 — 0,99625 

8 0,99625 — 0,99812 

 

 

 
 

Fig. 1.  Dependence of the mean LR of the Rice code to the p function 

 

 

 

 

 



68    Measurement Automation Monitoring, 2018, no. 03, vol. 64, ISSN 2450-2855 
 

We can calculate the percentage efficiency of the Rice code as 

the ratio of binary entropy to the average LR: 

 

 %.100
)1(log)1(log

%100 2201 



RR

R
L

pppp

L

H
E (3) 

 

The use of both Rice code and Golomb code to encode binary 

sources (understood as a set of independent symbols) guarantees 

high compression efficiency exceeding 95.94%. Figure 2. shows 

the dependence of the percentage ER efficiency of the Rice code in 

the function of the probability p. As its show, local minimal values 

mean the transition (marked with vertical dashed lines) between 

consecutive group numbers k. To keep the drawing legible for 

k > 3 (p > 0,94162) dashed lines have not been placed. 

 

 
 

Fig. 2.  The dependence of the percentage efficiency of Rice's code in function p 

 

 

3. Implementation of the Rice code 
 

Rice's word code consists of a prefix (in a unary code form) 

being the number of the group u and item number of the element 

in the group v represented as k-bits binary number (for k > 0). For 

the coded symbol n the group number is calculated from 

dependence: 

 

 









k

n
u

2
, (4) 

 

and the item number in the group (for k > 0): 

 

 
kk unnv 22mod  . (5) 

 

In a practical implementation the number u is obtained by a bit 

shift, and the number v is taken as k the less significant bits of the 

coded value n. The length of the Rice code word for the value of n 

expressed in bits is 1 kuln . 

A ready formula can be useful for parallelising procedures of 

coding. In a situation where we do not have the parameter p (e.g. 

in prediction errors coding when the characteristics of the data 

distribution change over time) it is good to divide the coded 

stream into data packets each of which can be encoded with an 

individual parameter k. Its optimal selection requires finding the 

shortest encoded bit string result, with no need to perform a full 

encoding process for subsequent values of k from kmin to kmax. It is 

enough to use the formula ,1 kuln and the procedure can be 

parallelised for individual k values. 

 

 

For example, the data is binary source S01 where p = p(0) = 0.8. 

If we build the Rice code for this source, then on the basis of 

formula (2) we get k = 2. This gives an average LR = 0.73875 and 

an ER = 97.722% efficiency. Table 2. shows the first 10 words of 

the Rice code for p = 0.8 (k = 2), along with other k values: p = 0.7 

(k = 1), p = 0.9 (k = 3), p = 0.95 (k = 4). 

 
Tab. 2. Sample Rice code words at k = {1, 2, 3, 4} 

 

n 
Rice code words 

k=1 k=2 k=3 k=4 

0 1:0 1:00 1:000 1:0000 

1 1:1 1:01 1:001 1:0001 

2 01:0 1:10 1:010 1:0010 

3 01:1 1:11 1:011 1:0011 

4 001:0 01:00 1:100 1:0100 

5 001:1 01:01 1:101 1:0101 

6 0001:0 01:10 1:110 1:0110 

7 0001:1 01:11 1:111 1:0111 

8 00001:0 001:00 01:000 1:1000 

9 00001:1 001:01 01:001 1:1001 

 

 

4. An implementation of encoder on AVR 
platform 

 

To show the simplicity and efficiency of the encoder and low 

hardware requirements as implementation environment for the 

encoder one of the popular AVR platforms has been chosen. To 

implementation was used Arduino UNO as encoder the bit stream 

in an asynchronous manner. Arduino is an open-source-hardware 

platform based on easy-to-use hardware and software [11]. On the 

Arduino board the microcontrollers from the AVR family are 

mounted. The microcontroller has a loaded bootloader, as the 

basic firmware, to which the user can add so-called "sketches" 

comprising the setup( ) and loop( ) functions, which in turn are 

used to implement basic microcontroller settings and implement 

the program appropriate for the user. The sketch is written in the 

high-level language C wrapped by the Wiring library. The 

Arduino UNO boards are equipped with a USB port, that is used 

as a serial port and a port for programming [10]. 

Two Arduino UNO were used for the implementation, one as 

the transmitter the second transmitter as a receiver. On this 

Arduino model, the ATmega328p microcontroller is mounted. 

Which achieves throughput approaching 1 MIPS per MHz [12]. 

Where the fastest assembler instruction is done in one clock 

cycles. Arduino UNO has an ICSP port and several digital ports, 

one of which can be used as an analog port (A/D). 

The SD card was used as the data source. It has been connected 

to the transmitting Arduino UNO module and read by the SPI via 

ICSP port. Between the Arduino boards, asynchronous 

communication has been made using three digital pins. 

One of the pins (pin 3) is used for data transfer (0/1 states), the 

other of pins (pin 4) is used to inform the receiving system that the 

data has been given, the third pin (pin 5) is used to receive 

feedback from the receiver, that he received the information 

(asynchronous transmission with confirmation). 

In addition, pins 2, 7-10 were used for diagnostic purposes and 

coder status check. Pin 2 to inform if the encoder is in a data 

coding state, pin 7 to connect a green diode indicating that the 

encoder has terminated work, pin 8 to connect the red diode 

informing that the encoder is busy, pin 9 to inform if the encoder 

is transmitting data to the receiver, pin 10 to inform if the 

transmitter is reading data from the SD card. This is presented in 

Figure 3. 

 



Measurement Automation Monitoring, 2018, no. 03, vol. 64, ISSN 2450-2855    69 
 

 
 

Fig. 3.  Connection Arduino UNO boards and SD card module ([10] and own 

interpretation) 

 

The cycle of reading data, data collection, encoding and 

transmission is as follows. The transmitter reads data from the SD 

card and collects the number of read zeros until it read a value of 

one of the input stream. After reading the value one, the 

transmitter codes the number of reads zeros n as numbers u and v, 

then the number u sends to the receiver as a unary sequence 

represented by zeros terminated by one. Then the number v sends 

to the receiver as a binary number written on k-bits. The full one 

cycle is presented in Figure 4. 

 

 
 

Fig. 4.  Waveform of a single cycle of data collection, coding and transmission,  

data collected using Saleae Logic 1.2.18 

 

The measurements carried out using of the logic state analyzer 

Saleae Logic 1.2.18 indicate that the data coding time depends on 

the group number k. The larger the value of k, the longer the 

calculation of u and v takes longer. However, in relation to the 

duration of asynchronous transmission and the time of reading 

data from the SD card, the coding time is small.  

Figure 5. presents a comparison of the average duration of 

selected stages of the encoder's work, measured for data with 

different probabilities p.  

The average coding time of a single received zero series is 0.820 

microseconds, where the asynchronous transmission time 

achieved as fast as possible is 8.545 microseconds. The 

transmission time of a single bit is 1.657 microseconds, while the 

time of handling a single reading of the smallest data unit from an 

SD card is up to 33.549 microseconds. 

 

 

 
 

Fig. 5.  Comparison of the average duration of selected stages of the coder operation 

 

For correct coding, not including transmission, only one variable 

of 8 bit (unsigned char for v) and two 16 bit (unsigned int for u 

and n), but assuming the known probability p the implementation 

of calculation operations u and v can be closed in three variables  

8 bits. 

Due to the extensive library for handling the SD card, the 

Arduino sketch with the bootloader consumes 8488 B (26%) of 

program memory, where the maximum is 32256 B. All global 

variables including auxiliary variables consume 836 B (40%) of 

dynamic memory, leaving 1212 B for local variables, where the 

maximum is 2048 B. 

 

5. Conclusions 
 

The study shows that the Rice code keeps high efficiency and 

coding rate even with small hardware resources. 

In our implementation, the encoder bandwidth is on the level 

up to 1.16-1.71 MB / s, which is significantly limited by the 

speed of the input stream and output stream, i.e. SD 

implementation and asynchronous output transmission proved to 

be the bottleneck of the implementation, not the compression 

process itself data. 

 

6. References 
 
[1] Elias P.: Universal codeword sets and representations of the integers, 

IEEE Transactions on Information Theory, March 1975, vol. 21, pp. 

194-203. 

[2] Golomb S. W.: Run-length encoding, IEEE Transactions on 

Information Theory, July 1966, vol. 12, pp. 399-401. 

[3] Levenstein V. E.:  On the redundancy and delay of separable codes for 

the natural numbers, Problems of Cybernetics, 1968, vol. 20, pp. 173-

179. 

[4] Rice R. F.: Some practical universal noiseless coding techniques, Jet 

Propulsion Labolatory, JPL Publication 79-22, Pasadena, CA, March 

1979. 

[5] Richardson I. E. G.: H.264 and MPEG4 video compression. Video 

coding for next-generation multimedia, West Sussex, England, John 

Wiley & Sons Ltd. 2004. 

[6] Sayood K.: Introduction to Data Compression, ed. 2, Morgan 

Kaufmann Publ., San Francisco, 2002. 

[7] Sayood K. (editor): Lossless compression handbook, California, 

Academic Press USA 2003. 

[8] Ulacha G., Stasiński R.: Performance Optimized Predictor Blending 

Technique For Lossless Image Coding, in: Proceedings of The 36th 

International Conference on Acoustics, Speech and Signal Processing 

ICASSP’11, Prague, Czech Republic, 22-27 May 2011, pp. 1541-

1544. 

[9] Ulacha G., Stasiński R.: Entropy Coder for Audio Signals, 

International Journal Of Electronics And Telecommunications, 2015, 

Vol. 61, No. 2, pp. 219-224. 

[10] https://www.arduino.cc/ 

Data pin
Active encode

Send

Received

To SD module as CS pin
Free

Busy
Active transmission
Data collect

GND

ICSP used to SD module:

MOSI
+5V

MISO
SCK

USBDC

1 2 3 4
10

-1

10
0

10
1

10
2

s

1. average time of one coding

2. the average time of one full transmission

3. the average transmission time of one bit

4. average reading time of one byte from the SD card



70    Measurement Automation Monitoring, 2018, no. 03, vol. 64, ISSN 2450-2855 
 

[11] https://www.oshwa.org/definition/ 

[12] http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-

bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf 

_____________________________________________________ 
Received: 09.03.2018     Paper reviewed     Accepted: 04.05.2018  

 

 

 
Cezary WERNIK, MSc, eng. 

 

Cezary Wernik received the MSc degree in computer 

science from the Szczecin University of Technology in 

2017. His research interests concerns audio 

compression, music information retrieval (MIR) and 

embedded systems programming. 

 

 

 

 

 

 

e-mail: cwernik@wi.zut.edu.pl  
 

 

Grzegorz ULACHA, PhD, eng. 

 

Grzegorz Ulacha (M'2000, PhD'2004) graduated from 

the Szczecin University of Technology, where he also 

defended his PhD thesis. He is working now as an 

assistant professor in Faculty of Computer Science & 

Information Technologies, West Pomeranian University 

of Technology, Szczecin. His scientific interests are 

mainly linked with lossless and lossy image and audio 

coding. 

 

 

 

e-mail: gulacha@wi.zut.edu.pl  
 

 

 

 


