PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cobalt adsorption on the nano-hydroxyapatite matrix: isotherm and kinetic studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cobalt radionuclide is one of the prime contaminants generated during operation of pressurized heavy water. The paper reports the study of cobalt adsorption on hydroxyapatite (HAp) nanoceramic. A modified wet chemical precipitation method is used for HAp synthesis. The HAp nano-material is characterized by XRD, FTIR, TG/DTA, AFM, SEM, and EDAX. Experiments are performed in batches to observe the effect of cobalt adsorption on HAp matrix. The adsorption of cobalt on HAp is examined at room temperature. The isotherm and kinetic studies showed that the Freundlich isotherm and pseudo-second order model are the best choices to describe the nature of adsorption.
Słowa kluczowe
Rocznik
Strony
131--137
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., tab.
Twórcy
  • School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431-606 Maharashtra, India
  • University of Maribor, Institute for Engineering Materials and Design, 17 Smetanova St., SI-2000 Maribor, Slovenia
  • School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431-606 Maharashtra, India
Bibliografia
  • [1] L. Järup, “Hazards of heavy metal contamination”, Br. Med. Bull. 68 (1), 167-182 (2003).
  • [2] S. Martin and W. Griswold, “Human health effects of heavy metals”, Environmental Science and Technology briefs for citizens 15, 1‒6 (2009).
  • [3] I. Sargın, M. Kaya, G. Arslan, T. Baran, and T. Ceter, “Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal”, Bioresour. Technol. 177, 1‒7 (2015).
  • [4] C. Belviso, F. Cavalcante, S. Di Gennaro, A. Lettino, A. Palma, P. Ragone, and S. Fiore, “Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite”, J. Environ. Manage. 137, 16‒22 (2014).
  • [5] S. Rengaraj and S.H. Moon, “Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins”, Water. Res. 36 (7), 1783-1793 (2002).
  • [6] D. Baralkiewicz and J. Siepak, “Chromium, nickel and cobalt in environmental samples and existing legal norms”, Pol. J. Environ. Stud. 8 (8), 201‒208 (1999).
  • [7] EPA United States Environmental Protection Agency, www.epa.gov/airtoics/hlthef/cobalt.html, (2015).
  • [8] H.S. Lim, W. Lim, J.Y. Hu, A. Ziegler, and S.L. Ong, “Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems”, J. Environ. Manage. 147, 24‒33 (2015).
  • [9] S. Zhang, M.H. Peh, Z. Thong, and T.S. Chung, “Thin film interfacial cross-linking approach to fabricate a chitosan rejecting layer over poly (ether sulfone) support for heavy metal removal”, Ind. Eng. Chem. Res. 54 (1), 472‒479 (2014).
  • [10] R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, and I. Queralt, “Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent”, Anal. Chem. 87 (6), 3535‒3542 (2015).
  • [11] X. Chen, J.V. Wright, J.L. Conca, and L.M. Peurrung, “Evaluation of heavy metal remediation using mineral apatite”, Water, Air, Soil, Poll. 98, 57‒78 (1997).
  • [12] R.U. Mene, M.P. Mahabole, K.C. Mohite, and R.S. Khairnar, “Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations”, Mater. Res. Bull. 50, 227‒234 (2014).
  • [13] M.P. Mahabole, R.U. Mene, and R.S. Khairnar, “Gas sensing and dielectric studies on cobalt doped hydroxyapatite thick films”, Adv. Mat. Letter. 4 (1), 46‒52 (2013).
  • [14] M.P. Mahabole, R.C. Aiyer, C.V. Ramakrishna, B. Sreedhar, and R.S. Khairnar, “Synthesis, characterization and gas sensing property of hydroxyapatite ceramic”, Bull. Mater. Sci. 28 (6), 535‒545 (2005).
  • [15] M.P. Ferraz, F.J. Monteiro, and C.M. Manuel, “hydroxyapatite nanoparticles: a review of preparation methodologies”, J. Appl. Biomater. Biomech. 2 (2), 74‒80 (2004).
  • [16] H. Soni, and P. Padmaja, “Palm shell based activated carbon for removal of bisphenol A: an equilibrium, kinetic and thermodynamic study”, J. Porous. Mater. 21 (3), 275‒284 (2014).
  • [17] A. Mathew, S. Parambadath, S.Y. Kim, S.S. Park, and C.S. Ha, “Adsorption of Cr (III) ions using 2-(ureylenemethyl) pyridine functionalized MCM-41”, J. Porous. Mater. 22 (3), 831‒842 (2015).
  • [18] H. Morgan, R.M. Wilson, J.C. Elliott, S.E.P. Dowker, and P. Anderson, “Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate”, Biomaterials 21 (6), 617‒627 (2000).
  • [19] J. Barralet, J.C. Knowles, S.Best, and W. Bonfield, “Thermal decomposition of synthesised carbonate hydroxyapatite”, J. Mater. Sci. - Mater. Med. 13 (6), 529‒533 (2002).
  • [20] M. Yusuf, L. Chuah, M.A. Khan, and T.S. Choong, “Adsorption of nickel on electric arc furnace slag: batch and column studies”, Separ. Sci. Techno. 49 (3), 388‒397 (2014).
  • [21] C.P.Shah, K. Singh,C. Dusane, S. Mishra, G.G. Pandit, M. Kumar, and P.N. Bajaj, “Study of extraction of Co (II) ions using the synthesized polyacrylonitrile-manganese dioxide composite beads”, Separ. Sci. Technol. 47 (8), 1177-1184, (2012).
  • [22] K. Lin, J. Pan, Y. Chen, R. Cheng, and X. Xu, “Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders”, J. Hazard. Mater. 161 (1), 231‒240 (2009).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9ffb3de-625d-43a6-9f16-18ecb0db5d63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.