PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of effective parameters on generating submicron (nano)-bubbles using the hydrodynamic cavitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although submicron (nano)-bubbles (NBs) have been broadly used in the laboratory flotation processes, the role of critical factors in their generation is not adequately explored in the literature. The present study investigates the effect of six key factors on generating submicron-sized bubbles and its application to coarse-sized quartz flotation. Interaction of influential factors is highlighted, which was generally overlooked in previous studies. These parameters i.e. frother type (MIBC and A65), frother dosage (50-130 mg/L), air flow rate (0.1-0.4 L/min), pressure in Venturi tube (250-400 kPa), liquid temperature (22-42 °C) and pH (6-10) were evaluated through software based statistical fractional factorial design. The size distribution of NBs produced by the principle of hydrodynamic cavitation was measured using a laser particle size analyzer (LPSA), and Sauter mean bubble diameter (d32) was considered as the response of experimental design. Batch flotation experiments were performed with and without the A65 and MIBC-NBs. The results of experimental design showed that relative intensity of the main factors followed the order of air flow rate>temperature>frother type as the most effective parameters on the bubble size. It was revealed that the lowest air flow rate (0.1 L/min) produced the smallest bubbles. Meanwhile, the d32 decreased as the liquid temperature increased, and the bubble size strongly was related to the frother type and its concentration. Indeed, with changing frother from MIBC to A65, the reduction in mean bubble size was two-fold. Interaction of frother type with its dosage, air flow rate and pressure were statistically recognized significant on the mean bubble size, which was confirmed by p-values. Finally, flotation recovery of quartz particles improved ca. 22% in the presence of NBs compared to the conventional flotation.
Rocznik
Strony
884--904
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • School of Mining Engineering, College of Engineering, University of Tehran, 1439957131 Tehran, Iran
  • School of Resources Engineering, Xi’an University of Architecture and Technology, 710055 Xi’an, China
  • School of Mining Engineering, College of Engineering, University of Tehran, 1439957131 Tehran, Iran
  • Department of Processing, Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum DresdenRossendorf, Chemnitzer Str. 40, 09599 Freiberg, Germany
  • a.hassanzadeh@gmx.de
autor
  • Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, 3619995161 Shahrood, Iran
  • School of Mining Engineering, College of Engineering, University of Tehran, 1439957131 Tehran, Iran
  • Department of Mining Engineering, Imam Khomeini International University, 3414896818 Qazvin, Iran
  • Mining Engineering Department, Tarbiat Modares University, 1411713116 Tehran, Iran
Bibliografia
  • AGARWAL, A., NG, W.J., LIU, Y., 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 84, 1175-1180. DOI: 10.1016/j.chemosphere.2011.05.054
  • AHMADI, R., KHODADADI DARBAN, A., 2013. Modeling and optimization of nano-bubble generation process using response surface methodology. International Journal of Nanoscience and Nanotechnology. 9, 151-162.
  • AHMADI, R., DARBAN, A.K., ABDOLLAHY, M., FAN, M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Min. Sci. Technol. 24, 559-566. DOI: 10.1016/j.ijmst.2014.05.021
  • ARIAS, S., RUIZ, X., CASADEMUNT, J., 2009. Experimental study of a microchannel bubble injector for microgravity applications. Microgravity Sci. Technol. 21, 107-111. DOI 10.1007/s12217-008-9060-1
  • AZEVEDO, A., ETCHEPARE, R., CALGAROTO, S., RUBIO, J., 2016. Aqueous dispersions of nanobubbles: Generation, properties and features. Miner. Eng. 94, 29-37. DOI: 10.1016/j.mineng.2016.05.001
  • AZEVEDO, A., ETCHEPARE, R., RUBIO, J., 2017. Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump. Water Sci. Technol. 75, 2342-2349. DOI: 10.2166/wst.2017.113
  • AZIZI, A., MASDARIAN, M., HASSANZADEH, A., BAHRI, Z., NIEDOBA, T., SUROWIAK, A., 2020. Parametric optimization in rougher flotation performance of a sulfidized mixed copper ore, Minerals. 10(8), 660, 1-19. DOI:10.3390/min10080660
  • KATAL, R., AZIZI, A., GHARABAGHI, M., 2020. Investigating the leaching behavior of copper from chalcopyrite concentrate in H2SO4/CuCl2 Media. IJMSE. 17(2), 66-76. DOI: 10.22068/ijmse.17.1.66
  • BRENNEN, C.E., 2014. Cavitation and bubble dynamics. Cambridge University Press. First published.
  • BU, T.T., NGUYEN, D.C., HAN, M., 2019. Average size and zeta potential of nanobubbles in different reagent solutions. J. Nanopart. Res. 21, 173.
  • CALGAROTO, S., AZEVEDO, A., RUBIO, J., 2015. Flotation of quartz particles assisted by nanobubbles. Int. J. Miner. Process. 137, 64-70. DOI: 10.1016/j.minpro.2015.02.010.
  • CHEN, Q., WIEDENROTH, H. S., GERMAN, S. R., WHITE, H. S., 2015. Electrochemical Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes. J. Am. Chem. Soc. 137, 12064-12069. DOI: 10.1021/jacs.5b07147
  • CHO, S-H., KIM, J-Y., CHUN, J-H., KIM, J-D., 2005. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 269, 28-34. https://doi.org/10.1016/j.colsurfa.2005.06.063
  • DOMNICK, J., DURST, F., 1995. Measurement of bubble size, velocity and concentration in flashing flow behind a sudden constriction. Int. J. Multiph. Flow. 21, 1047-1062. DOI: 10.1016/0301-9322(95)00045-Y
  • DUONG, H.H., HASSANZADEH, A., PEUKER, U.A., RUDOLPH, M., 2019. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation. Powder Technol. 345, 223-233. https://doi.org/10.1016/j.powtec.2019.01.014
  • ELMAHDY, A.M., MIRNEZAMI, M., FINCH, J. A., 2008. Zeta potential of air bubbles in presence of frothers. Int. J. Miner. Process. 89, 40-43. DOI: 10.1016/j.minpro.2008.09.003
  • FAN, M., ZHAO, Y., TAO, D., 2012. Fundamental studies of nanobubble generation and applications in flotation. Separation Technologies for Minerals, Coal, and Earth Resources, Society for Mining, Metallurgy, and Exploration, Littleton, CO. 457-469.
  • FAN, M., TAO, D., 2008. A study on picobubble enhanced coarse phosphate froth flotation. Sep. Sci. Technol. 43, 1-10. DOI: 10.1080/01496390701747853
  • FAN, M., TAO, D., HONAKER, R., LUO, Z. F., 2010. Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Min. Sci. Technol. 20, 1-19. DOI: 10.1016/S1674-5264(09)60154-X
  • FAN, M., TAO, D., HONAKER, R., LUO, Z. F., 2010. Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate. Int. J. Min. Sci. Technol. 20, 317-338. DOI:10.1016/S1674-5264(09)60205-2
  • FAN, M., TAO, D., HONAKER, R., LUO, Z. F., 2010. Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal. Min. Sci. Technol. 20, 641-671. DOI:10.1016/S1674-5264(09)60259-3
  • FARMER, A., COLLINGS, A., JAMESON, G., 2000. Effect of ultrasound on surface cleaning of silica particles. Int. J. Miner. Process. 60, 101-113. DOI: 10.1016/S0301-7516(00)00009-0
  • FURUSAKI, S., 2001. The expanding world of chemical engineering. CRC Press. 175-176.
  • GUVEN, O., BATJARGAL, K., OZDEMIR, O., KARAKASHEV, S.I., GROZEV, N.A., BOYLU, F., ÇELIK, M.S., 2020. Experimental procedure for the determination of the critical coalescence concentration (CCC) of simple frothers, 10. 617, 1-12. DOI:10.3390/min10070617
  • HAMAMOTO, S., TAKEMURA, T., SUZUKI, K., NISHIMURA, T., 2018. Effects of pH on nano-bubble stability and transport in saturated porous media. J. Contam. Hydrol. 208, 61-67. DOI: 10.1016/j.jconhyd.2017.12.001
  • HAMPTON, M., NGUYEN, A., 2010. Nanobubbles and the nanobubble bridging capillary force. Adv. Colloid Interface Sci. 154, 30-55. DOI: 10.1016/j.cis.2010.01.006
  • HAN, M., PARK, Y., LEE, J., SHIM, J., 2002. Effect of pressure on bubble size in dissolved air flotation. Water. Supply. 2(5-6): 41-46. DOI: 10.2166/ws.2002.0148
  • HAN, Y., ZHU, J., SHEN, L., ZHOU, W., LING, Y., YANG, X., WANG, S., DONG, Q., 2019. Bubble Size Distribution Characteristics of a Jet-Stirring Coupling Flotation Device. Minerals. 9(6), 369. DOI: 10.3390/min9060369
  • HASSANZADEH, A., VAZIRI HASSAS, B., KOUACHI, S., BRANCOVA, Z., CELIK, M.S., 2016. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids Surf. A Physicochem. Eng. Asp. 498, 258-267.https://doi.org/10.1016/0301-9322(95)00045-Y
  • HASSANZADEH, A., KOUACHI, S., HASANZADEH, M., CELIK, M.S., 2017. A new insight to the role of bubble properties on inertial effect in particle–bubble interaction. J. Dispers. Sci. Technol. 38, 953-960. https://doi.org/10.1080/01932691.2016.1216437
  • HASSANZADEH, A., KARAKAS, F., 2017. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. J. Dispers. Sci. Technol. 38, 309-316. https://doi.org/10.1080/01932691.2016.1164061
  • HASSANZADEH, A., FIROUZI, M., ALBIJANIC, B., CELIK, M.S., 2018. A review on determination of particle–bubble encounter using analytical, experimental and numerical methods. Miner. Eng. 122, 296-311. https://doi.org/10.1016/j.mineng.2018.04.014
  • HASSANZADEH, A., AZIZI, A., KOUACHI, S., KARIMI, M., CELIK, M.S., 2019. Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations. Miner. Eng. 141, 105836. https://doi.org/10.1016/j.mineng.2019.105836
  • HASSANZADEH, A., SAJJADY, S.A., GHOLAMI, H., AMINI, S., ÖZKAN, S.G., 2020. An improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation, Minerals, 10(7), 619, 1-19. https://doi.org/10.3390/min10070619
  • JOHNSON, B.D., COOKE, R.C., 1981. Generation of stabilized microbubbles in seawater. Sci. 213, 209-211. DOI: 10.1126/science.213.4504.209
  • KIM, J. Y., SONG, M. G., KIM, J. D., 2000. Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions. J. Colloid Interface Sci. 223, 285-291. DOI: 10.1006/jcis.1999.6663
  • KOUACHI, S., VAZIRI HASSAS, B., HASSANZADEH, A., CELIK, M.S., BOUHENGUEL, M., 2017. Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant equation. Colloids Surf. A Physicochem. Eng. Asp. 517, 72-83. https://doi.org/10.1016/j.colsurfa.2017.01.002
  • KRACHT, W., MORAGA, C., 2016. Acoustic measurement of the bubble Sauter mean diameter d32. Miner. Eng. 98, 122-126. DOI: 10.1016/j.mineng.2016.08.001
  • KUMAR, R., KENTISH, S., ASHOKKUMAR, M., 2009. Selected applications of ultrasonic in food processing, Raman Kumar Bhaskaracharya, Food Eng. Rev. 1, 31-49. DOI: 10.1007/s12393-009-9003-7
  • LEI, W., ZHANG, M., ZHANG, Z., ZHAN, N., FAN, R., 2020. Effect of bulk nanobubbles on the entrainment of kaolinite particles in flotation. Powder Technol. 362, 84-89. DOI: https://doi.org/10.1016/j.powtec.2019.12.015
  • LOU, S. T., OUYANG, Z. Q., ZHANG, Y., 2000. Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing. Measurement, and Phenomena. 18, 2573-2575. DOI: 10.1116/1.1289925
  • MEEGODA, N., ALUTHGUN HEWAGE, S., BATAGODA, J.H., 2018. Stability of nanobubbles. Environ. Eng. Sci. 35, 1216-1227. DOI: 10.1089/ees.2018.0203
  • NAJAFI, A., DRELICH, J., YEUNG, A., XU, Z., MASLIYAH, J., 2007. A novel method of measuring electrophoretic mobility of gas bubbles. J. Colloid Interface Sci. 308, 344-350. DOI: 10.1016/j.jcis.2007.01.014
  • NAZARI, S., SHAFAEI, S.Z., SHAHBAZI, B., CHEHREH CHELGANI, S., 2018. Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble. Colloids Surf. A Physicochem. Eng. Asp. 559, 284-289. DOI: 10.1016/j.colsurfa.2018.09.066.
  • NAZARI, S., SHAFAEI, S.Z., GHARABAGHI, M., AHMADI, R., SHAHBAZI, B., 2018. Effect of frother type and operational parameters on nano bubble flotation of quartz coarse particles. Journal of Mining & Environment. 9, 539-546. DOI: 10.22044/jme.2017.6404.1461
  • NAZARI, S., SHAFAEI, S.Z., GHARABAGHI, M., AHMADI, R., SHAHBAZI, B., TEHRANCHI, A., 2018. New approach to quartz coarse particles flotation using NBs, emphasis on the bubble size distribution. Int. J. Nanosci. 19. DOI:10.1142/S0219581X18500485.
  • NAZARI, S., SHAFAEI, S.Z., GHARABAGHI, M., AHMADI, R., SHABAZI, B., FAN, M., 2019. Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation. Int. J. Min. Sci. Technol. 29, 289-295. DOI:10.1016/j.ijmst.2018.08.011.
  • NAZARI, S., CHEHREH CHELGANI, S., SHAFAEI, S.Z., SHAHBAZI, B., SOLIMANI MATIN, S., GHARABAGHI, M., 2019. Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents. Sep. Purif. Technol. 220, 61-68. DOI: 10.1016/j.seppur.2019.03.033
  • NAZARI, S., HASSANZADEH, A., 2020. The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles, Powder Technol. 374, 160-171. https://doi.org/10.1016/j.powtec.2020.07.049
  • NEETHIRAJAN, S., KOBAYASHI, I., NAKAJIMA, M., WU, D., NANDAGOPAL, S., LIN, F., 2011. Microfluidics for food, agriculture and biosystems industries. Lab Chip. 11, 1574-1586.
  • NIRMALKAR, N., PACEK, A. W., BARIGOU, M., 2018. Interpreting the Interfacial and Colloidal Stability of Bulk Nanobubbles. Soft Matter. 14, 9643-9656. DOI: 10.1039/C8SM01949E
  • PAXTON, W.F., C. KISTLER, K., C. OLMEDA, C., SEN, A., K. ST. ANGELO, S., CAO, Y., E. MALLOUK, T., E. LAMMERT, P., H. CRESPI, V., 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc., 126, 13424-13431. DOI: 10.1021/ja047697z
  • POURKARIMI, Z., REZAI, B., NOAPARAST, M., 2017. Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications. Physicochem. Probl. Miner. Process. 53, 920-942. DOI: 10.5277/ppmp170220
  • RATH, S.S., SAHOO, H., DAS, B., 2013. Optimization of flotation variables for the recovery of hematite particles from BHQ ore. Int. J. Miner. Metall. Mater. 20, 605–611. DOI: 10.1016/j.cjche.2018.02.014
  • RULYOV, N.N., FILIPPOV, L.O., KRAVCHENKO, O.V., 2020. Combined microflotation of glass beads, Colloids Surf. A Physicochem. Eng. Asp. 598, 124810. https://doi.org/10.1016/j.colsurfa.2020.124810
  • SHAHBAZI, B., 2015. Study of relationship between flotation rate and bubble surface area flux using bubble-particle attachment efficiency. Am. J. Chem. Eng. 3, 6-12. DOI: 10.11648/j.ajche.s.2015030202.12
  • TAO, D., SOBHY, A., 2019. Nanobubble effects on hydrodynamic interactions between particles and bubbles. Powder Technol. 346, 385-395. DOI: 10.1016/j.powtec.2019.02.024
  • WANG, Q., ZHAO, H., QI, N., QIN, Y., ZHANG, X., LI, Y., 2019. Generation and stability of size-adjustable bulk nanobubbles based on periodic pressure change, Sci. Rep. (Nature Publisher Group); London. 9, 1118. DOI:10.1038/s41598-018-38066-5
  • WU, C., NESSET, K., MASLIYAH, J., XU, Z., 2012. Generation and characterization of submicron size bubbles. Adv. Colloid Interface Sci. 179-182, 123-132.
  • XIAO, W., ZHAO, Y., YANG, J., REN, Y., YANG, W., HUANG, X., ZHANG, L., 2019. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface. Langmuir. 35, 9239–9245. DOI: 10.1021/acs.langmuir.9b01384
  • YEKEEN, N., IDRIS, K. A., A. MANAN, M., SAMIN, A. M., RISAL, A.R., XIN KUN, T., 2017. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin. J. Chem. Eng. 25, 347-357. DOI:10.1016/j.cjche.2016.08.012
  • ZHANG, X., WANG, Q.S., WU, Z.X., TAO, D.P., 2020. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. Int. J. Miner. Metall. Mater. 27, 152-161. DOI: 10.1007/s12613-019-1936-0 ZHANG, X.H., KHAN, A., DUCKER, W. A., 2007. A nanoscale gas state. Phys. Rev. Lett. 98, 136101. DOI:10.1103/PhysRevLett.98.136101
  • ZHANG, X.H., LI, G., WU, Z.H., ZHANG, X.D., HU, J., 2005. Effect of temperature on the morphology of nanobubbles at mica/water interface. Chinese Phys. 14, 1774-1778. DOI: 10.1088/1009-1963/14/9/015/meta
  • ZHOU, Z. A., XU, Z., FINCH, J. A., HU, H., RAO, S. R., 1997. Role of hydrodynamic cavitation in fine particle flotation. Int. J. Miner. Process. 51, 139-149. DOI: 10.1016/S0301-7516(97)00026-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9fd7545-13ef-4557-9205-93e69f6a3fcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.