PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a guaranteed minimum detectable sensor fault diagnosis scheme

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the estimation of sensor faults for dynamic systems as well as the assessment of the uncertainty of the resulting estimates. For that purpose, it is assumed that the external disturbances are bounded within an ellipsoidal domain. This allows considering both stochastic and deterministic process and measurement uncertainties. Under such an assumption, a fault diagnosis scheme is developed with a prescribed convergence rate and accuracy. To achieve fault estimation, a conversion into an equivalent descriptor system is utilized. The paper provides a full stability and convergence analysis of the estimator including observability analysis. As a result, a set of complementary fault uncertainty intervals is obtained, which are minimized in such a way as to obtain a minimum detectable sensor fault. The final part of the paper exhibits a numerical example concerning fault estimation of a multi-tank system. The obtained results clearly confirm the performance of the proposed estimator expressed in the minimum detectable fault intervals.
Rocznik
Strony
409--423
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Institute of Control and Computation Engineering, University of Zielona Góra, ul. prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland
  • Institute of Control and Computation Engineering, University of Zielona Góra, ul. prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland
  • Institute of Control and Computation Engineering, University of Zielona Góra, ul. prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland
  • Institute of Mechanical Engineering, University of Zielona Góra, ul. prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] Alessandri, A., Baglietto, M. and Battistelli, G. (2006). Design of state estimators for uncertain linear systems using quadratic boundedness, Automatica 42(3): 497-502.
  • [2] Blanke, M., Schröder, J., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin/Heidelberg.
  • [3] Bounemeur, A., Chemachema, M. and Essounbouli, N. (2018). Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures, ISA Transactions 79: 45-61.
  • [4] Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space observers for chaotic synchronization and secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3): 345-349.
  • [5] Chandra, S., Gupta, M.K. and Tomar, N.K. (2015). Synchronization of Rossler chaotic system for secure communication via descriptor observer design approach, 2015 International Conference on Signal Processing, Computing and Control (ISPCC), Waknaghat, India, pp. 120-124.
  • [6] Chen, F., Niu, J. and Jiang, G. (2018). Nonlinear fault-tolerant control for hypersonic flight vehicle with multi-sensor faults, IEEE Access 6: 25427-25436.
  • [7] Chen, J. and Patton, R.J. (1999). Robust Model Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, London.
  • [8] de Oliveira, M., Bernussou, J. and Geromel, J. (1999). A new discrete-time robust stability condition, Systems and Control Letters 37(4): 261-265.
  • [9] de Oliveira, M.C. and Skelton, R.E. (2007). Stability tests for constrained linear systems, in S.O. Reza Moheimani (Ed.), Perspectives in Robust Control, Springer, London, pp. 241-257.
  • [10] Dimassi, H., Lorı, A. and Belghith, S. (2012). A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers, Communications in Nonlinear Science and Numerical Simulation 17(9): 3727-3739.
  • [11] Ding, B. (2010). Constrained robust model predictive control via parameter-dependent dynamic output feedback, Automatica 46(9): 1517-1523.
  • [12] Gillijns, S. and De Moor, B. (2007). Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica 43(5): 934-937.
  • [13] Gupta, M.K., Tomar, N.K., Mishra, V.K. and Bhaumik, S. (2017). Observer design for semilinear descriptor systems with applications to chaos-based secure communication, International Journal of Applied and Computational Mathematics 3: 1313-1324.
  • [14] Hou, M. and Patton, R.J. (1998). Optimal filtering for systems with unknown inputs, IEEE Transactions on Automatic Control 43(3): 445-449.
  • [15] Hsieh, C.-S. (2011). Optimal filtering for systems with unknown inputs via the descriptor Kalman filtering method, Automatica 47(10): 2313-2318.
  • [16] INTECO (2013). Multitank System - User’s Manual, INTECO, Kraków.
  • [17] Jung, D. and Frisk, E. (2018). Residual selection for fault detection and isolation using convex optimization, Automatica 97: 143-149.
  • [18] Kodakkadan, A.R., Pourasghar, M., Puig, V., Olaru, S., Ocampo-Martinez, C. and Reppa, V. (2017). Observer-based sensor fault detectability: About robust positive invariance approach and residual sensitivity, IFAC-PapersOnLine 50(1): 5041-5046.
  • [19] Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171-183, DOI: 10.34768/amcs-2022-0013.
  • [20] Kukurowski, N., Pazera, M. and Witczak, M. (2021a). Fault-tolerant tracking control and remaining useful life estimation for Takagi-Sugeno fuzzy system, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, pp. 1-7.
  • [21] Kukurowski, N., Pazera, M. and Witczak, M. (2021b). Fault-tolerant tracking control for a descriptor system under an unknown input disturbances, Electronics 10(18): 2247.
  • [22] Liu, X., Gao, Z. and Zhang, A. (2018). Robust fault tolerant control for discrete-time dynamic systems with applications to aero engineering systems, IEEE Access 6: 18832-18847.
  • [23] Mustafa, M.O., Nikolakopoulos, G., Gustafsson, T. and Kominiak, D. (2016). A fault detection scheme based on minimum identified uncertainty bounds violation for broken rotor bars in induction motors, Control Engineering Practice 48: 63-77.
  • [24] Nasrolahi, S.S. and Abdollahi, F. (2018). Sensor fault detection and recovery in satellite attitude control, Acta Astronautica 145: 275-283.
  • [25] Patton, R.J. and Chen, J. (1997). Observer-based fault detection and isolation: Robustness and applications, Control Engineering Practice 5(5): 671-682.
  • [26] Pazera, M., Buciakowski, M. and Witczak, M. (2018). Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system, International Journal of Applied Mathematics and Computer Science 28(2): 297-308, DOI: 10.2478/amcs-2018-0021.
  • [27] Pazera, M., Kukurowski, N., Witczak, M. and Buciakowski, M. (2021). A robust Takagi-Sugeno fault diagnostic scheme for remaining useful life estimation, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, pp. 1-6.
  • [28] Pazera, M. and Witczak, M. (2019). Towards robust simultaneous actuator and sensor fault estimation for a class of nonlinear systems: Design and comparison, IEEE Access 7: 97143-97158.
  • [29] Peng, Y., Chen, J. and Ma, Y. (2019). Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems, Nonlinear Dynamics 96: 363-387.
  • [30] Pizzi, N., Kofman, E., De Doná, J.A. and Seron, M.M. (2019). Actuator fault tolerant control based on probabilistic ultimate bounds, ISA Transactions 84: 20-30.
  • [31] Rinaldi, G., Menon, P.P., Edwards, C. and Ferrara, A. (2018). Design and validation of a distributed observer-based estimation scheme for power grids, IEEE Transactions on Control Systems Technology 28(2): 680-687.
  • [32] Rodrigues, M., Hamdi, H., Theilliol, D., Mechmeche, C. and BenHadj Braiek, N. (2015). Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems, International Journal of Robust and Nonlinear Control 25(5): 673-688.
  • [33] Rotondo, D., Ponsart, J.-C., Theilliol, D., Nejjari, F. and Puig, V. (2015). A virtual actuator approach for the fault tolerant control of unstable linear systems subject to actuator saturation and fault isolation delay, Annual Reviews in Control 39: 68-80.
  • [34] Samada, S.E., Puig, V. and Nejjari, F. (2022). Robust fault detection using zonotopic parameter estimation, IFAC-PapersOnLine 55(6): 157-162.
  • [35] Skelton, R., Iwasaki, T. and Grigoriadis, D. (1997). A Unified Algebraic Approach to Control Design, CRC Press, London.
  • [36] Tan, J., Olaru, S., Roman, M., Xu, F. and Liang, B. (2019). Invariant set-based analysis of minimal detectable fault for discrete-time LPV systems with bounded uncertainties, IEEE Access 7: 152564-152575.
  • [37] Tan, J., Zheng, H., Meng, D., Yuan, B., Wang, X. and Liang, B. (2023). Confidence set-based analysis of minimal detectable fault under hybrid Gaussian and bounded uncertainties, Automatica 155: 111141.
  • [38] Wang, H., Han, Z., Zhang, W. and Xie, Q. (2009). Chaotic synchronization and secure communication based on descriptor observer, Nonlinear Dynamics 57(1-2): 69-73.
  • [39] Wang, W., Geng, Y., Sun, J., Xu, H. and Sheng, L. (2022). Sensor fault detection and minimum detectable fault analysis for dynamic point-the-bit rotary steerable system, ISA Transactions 127: 108-119.
  • [40] Wen, P., Li, X., Hou, N. and Mu, S. (2022). Distributed recursive fault estimation with binary encoding schemes over sensor networks, Systems Science & Control Engineering 10(1): 417-427.
  • [41] Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches, Springer, Berlin.
  • [42] Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Lectures Notes in Electrical Engineering, Vol. 266, Springer, Heidelberg.
  • [43] Witczak, M., Pazera, M., Matysiak, R. and Aubrun, C. (2022). A note on a minimum detectable actuator fault of dynamic systems under ellipsoidal bounding, 26th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 324-329.
  • [44] Witczak, M., Seybold, L., Bulach, E. and Maucher, N. (2023). Modern IoT Onboarding Platforms for Advanced Applications: A Practitioner’s Guide to KIS.ME, Springer, Berlin/Heidelberg.
  • [45] Xu, F. (2022). Minimal detectable and isolable faults of active fault diagnosis, IEEE Transactions on Automatic Control 68(2): 1138-1145.
  • [46] Yang, J., Zhu, F., Wang, X. and Bu, X. (2015). Robust sliding-mode observer-based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systems, International Journal of Control, Automation and Systems 13(5): 1037-1046.
  • [47] Ye, D., Park, J. and Fan, Q. (2016). Adaptive robust actuator fault compensation for linear systems using a novel fault estimation mechanism, International Journal of Robust and Nonlinear Control 26(8): 1597-1614.
  • [48] Zemouche, A. and Boutayeb, M. (2013). On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica 49(2): 585-591.
  • [49] Zemouche, A., Boutayeb, M. and Iulia Bara, G. (2008). Observer for a class of Lipschitz systems with extension to H∞ performance analysis, Systems and Control Letters 57(1): 18-27.
  • [50] Zhang, K., Jiang, B., Shi, P. and Cocquempot, V. (2018). Observer-based Fault Estimation Techniques, Springer, Berlin/Heidelberg.
  • [51] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.
  • [52] Zhirabok, A. and Shumsky, A. (2018). Fault diagnosis in nonlinear hybrid systems, International Journal of Applied Mathematics and Computer Science 28(4): 635-648, DOI: 10.2478/amcs-2018-0049.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9fb4411-cdfb-44b1-863d-e42dea69e52b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.