PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Change of driver’s response time depending on light source and brake light technology used

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with finding out the influence of the type of light source of car brake lights on the reaction time of the driver of the preceding vehicle. The driver’s reaction time was measured in the form of pressing the brake pedal depending on the lighting of brake lights on the leading vehicle. The measurement evaluation consists of a comparison of the phase shift between the brake light signal of the first vehicle and the brake light signal of the second vehicle. The experimental measurement was performed for five people using the classic light bulb, afterwards, an LED light source for the brake lights of the first vehicle. The records confirmed that the driver’s reaction time depends on many factors, with the source and intensity of the brake lights also playing an important role. Further, it affects the reaction time and the activity or inactivity of the rear sidelights. The reaction time of the driver of the preceding vehicle was extended with their activation.
Rocznik
Tom
Strony
45--53
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
autor
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
Bibliografia
  • 1. Balal Nezah, Yael Balal, Yair Richter, Yosef Pinhasi. 2020. „Detection of Low RCS Supersonic Flying Targets with a High-Resolution MMW Radar”. Sensors 20(11): 3284. DOI: https://doi.org/10.3390/s20113284.
  • 2. Borecký Petr. 2018. Reakční čas řidičů. [In Czech: Drivers' reaction time]. Thesis. Praha: České vysoké učení technické.
  • 3. Bradáč A. 1997. Soudní inženýrství. [In Czech: Forensic engineering]. Brno: Akademické nakladatelství CERM.
  • 4. Cyganek Boguslaw, Slawomir Gruszczynski. 2014. „Hybrid computer vision system for drivers' eye recognition and fatigue monitoring”. Neurocomputing 126: 78-94.
  • 5. Czech Piotr. 2017. „Physically disabled pedestrians - road users in terms of road accidents”. Lecture Notes in Networks and Systems 2: 157-165. DOI: 10.1007/978-3-319-43985-3_14. In: Edited by: Macioszek E., Sierpinski G. Contemporary challenges of transport systems and traffic engineering. 13th Scientific and Technical Conference on Transport Systems. Theory and Practice (TSTP). Katowice, SEP 19-21, 2016.
  • 6. Dabbour Essam, Abdallah Badran. 2020. „Understanding how drivers are injured in rear-end collisions“. European Transport \ Trasporti Europei 77 n. 1. ISSN: 1825-3997.
  • 7. Devault L. Travis, W. Thomas Seamans, F.Bradley Blackwell. 2020. „Frontal vehicle illumination via rear-facing lighting reduces potential for collisions with white-tailed deer“. Ecosphere 11(7) e03187. DOI: https://doi.org/10.1002/ecs2.3187.
  • 8. Distefano Natalia, Salvatore Leonardi, Giulia Pulvirenti, Richard Romano, Natasha Merat, Erwin Boer, Ellie Woolridge. 2020. „Physiological and driving behaviour changes associated to different road intersections“. European Transport \ Trasporti Europei 77 n. 4. ISSN: 1825-3997.
  • 9. Etinge Ariel, Nezah Balal, Boris Litvak, t MosheEina, Boris Kapilevich, Yosef Pinhasi. 2014. „Non-Imaging MM-Wave FMCW Sensor for Pedestrian Detection”. IEEE Sensors Journal 14(4): 1232-1237. DOI: https://doi.org/10.1109/JSEN.2013.2293534.
  • 10. Jilek Petr. 2018. Vývoj systému pro ověřování jízdní stability silničního vozidla ve vztahu k adhezním podmínkám. [In Czech: Development of a system for verifying the driving stability of a road vehicle in relation to adhesion conditions]. Dissertation. Pardubice: Univerzita Pardubice.
  • 11. Jurecki Rafal S. 2020. „Analysis of Road Safety in Poland after Accession to the European Union“. Communications – Scientific Letters of the University of Zilina (Komunikacie) 22(2): 60-67. ISSN: 1335-4205.
  • 12. Kleprlík Jaroslav. 2020. „Opatření pro zajištění účinného a správného brzdění silničních vozidel“. Perner’s Contacts 11(1): 68-81.
  • 13. Montalva Sonia, Carlos Muñoz Juan, Ricardo Paredes. 2010. „Assignment of work shifts to public transit drivers based on stated preferences“. Public Transport 2: 199-218.
  • 14. Nowosielski Adam, Krzysztof Malecki, Pawel Forczmanski, Anton Smolinski, Kazimierz Krzywicki. 2020. „Embedded Night-Vision System for Pedestrian Detection“. IEEE Sensors Journal 20(16): 9293-9304. DOI: https://doi.org/10.1109/jsen.2020.2986855.
  • 15. Osmančík Radek. 2017. Analýza změny reakční doby vlivem působení vnějších a vnitřních vlivů organizmu. [In Czech: Analysis of the change in reaction time due to the influence of external and internal influences of the organism]. Thesis. VŠB – Technická univerzita.
  • 16. Patella Sergio Maria, Simone Sportiello, Stefano Carrese, Francesco Bella, Francesco Asdrubali. 2020. „The effect of a LED lighting crosswalk on pedestrian safety: Some experimental results“. Safety 6(2). Article number 20. DOI: https://doi.org/10.3390/safety6020020.
  • 17. Prentkovskis Olegas, Edgar Sokolovskij, Vilius Bartulis. 2010. “Investigating traffic accidents: a collision of two motor vehicles”. Transport 25(2): 105-115.
  • 18. Štěrba Pavel. 2013. Elektronika a elektrotechnika motorových vozidel: seřizování, diagnostika závad a chybové kódy OBD. [In Czech: Electronics and electrical engineering of motor vehicles: adjustment, fault diagnosis and OBD fault codes]. CPress.
  • 19. Vlk František. 2006. Automobilová elektronika. [In Czech: Automobilová elektronika]. Brno: Nakladatelství a vydavatelství Vlk.
  • 20. You-Sun Won, Chung-Hwan Kim, Sang-Gug Lee. 2015. „Range Resolution Improvement of a 24 GHz ISM Band Pulse Radar – A Feasibility Study“. IEEE Sensors Journal 15(12): 7142-7149. DOI: https://doi.org/10.1109/JSEN.2015.2469154.
  • 21. Zhangjing Wang, Yu Wu, Qingqing Niu. 2019. „Multi-Sensor Fusion in Automated Driving: A Survey”. Access IEEE 8: 2847-2868. DOI: https://doi.org/10.1109/ACCESS.2019.2962554.
  • 22. Zikmund Tomáš. 2006. Dynamika podvozkových částí silničních vozidel. [In Czech: Dynamics of chassis parts of road vehicles]. Dissertation. Pardubice: Univerzita Pardubice.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9f38cbe-09ea-47b8-9c43-62fc89cf45a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.