Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A hydroponic trial was conducted to study the effect of chloride salinity in simulated effluent on Cd accumulation by tobacco. Leaf surface area (LSA) and root surface area (RSA) measurements were incorporated as possible determinants of Cd uptake rate by plants. Results showed that individual plant differences in Cd content were normalized when including RSA to express Cd uptake rates by plants but not including LSA. A biotic ligand model (BLM) fitted to predict Cd uptake, estimated active and almost linear uptake of the free Cd2+ ion by tobacco plants, while virtually no changes in the chloride complex (CdCl+) uptake were predicted, presumably due to a rapid saturation of the hypothetical root sorption sites at the concentrations used in this trial. Nicotiana tabacum var. K326 is evidenced to be a species potentially suitable for biological wastewater treatment using rhizofiltration at concentrations commonly found in salt-affected wastewater, with high Cd accumulation (185 to 280 mg/kgdm) regardless of water salinity and tolerance up to 80 mmol/L NaCl.
Czasopismo
Rocznik
Tom
Strony
35--40
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
- Basic Science and Engineering Division, Metropolitan Autonomus University - Azcapotzalco Unit, Mexico
autor
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
autor
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
- Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
- Monterrey Technological Institute of Higher Studies (Instituto Tecnológico y de Estudios Superiores de Monterrey) Mexico
autor
- Exact Sciences and Engineering University Center (CUCEI). University of Guadalajara, Mexico
autor
- Exact Sciences and Engineering University Center (CUCEI). University of Guadalajara, Mexico
Bibliografia
- 1. Berkelaar, E., & Hale, B. (2000). The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars, Canadian Journal of Botany, 78, 3, pp. 381-387, DOI: 10.1139/b00-015.
- 2. Berkelaar, E., & Hale, B. (2003). Cadmium accumulation by durum wheat roots in ligand buffered hydroponic culture: uptake of Cd ligand complexes or enhanced diffusion? Canadian Journal of Botany, 81, 7, pp. 755-763, DOI: 10.1139/b03-061.
- 3. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability, Soil and Sediment Contamination: An International Journal, 23(6), 628-640.
- 4. Candelario-Torres, M.F. (2014). Rhizofiltration of metal polluted effluents by Nicotiana tabacum, M.Sc. diss., Universidad Autonoma de Nuevo Leon (in spanish), pp. 1-63.
- 5. Durand, T.C., Hausman, J.F., Carpin S., Alberic, P., Baillif, P., Label, P. & Morabito, D. (2010). Zinc and cadmium effects on growth and ion distribution in Populus tremula x Populus alba, Biologia Plantarum, 54, 1, pp. 191-194, http://link.springer.cOm/article/10.1007/sl0535-010-0033-z
- 6. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability, Soil and Sediment Contamination: An International Journal, 23, 6, pp. 628-640, http://www.tandfonline.com/doi/abs/10.1080/15320383.2014.857640.
- 7. Erdem, H., Kinay, A., Öztürk, M. & Tutuş, Y (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars, Journal of Food, Agriculture and Environment, 10, 1, pp. 965-969, https://www.researchgate.net/publication/279481916_Effect_of_cadmium_stress_on_growth_and_mineral_composition_of_two_tobacco_cultivars.
- 8. Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses, Journal of Plant Growth Regulation, 31, 3, pp. 292-308, DOI: 10.1007/s00344-011-9239-3.
- 9. Green-Ruiz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects, Bioresoure Technology, 99, 9, pp. 3864-3870, DOI: 10.1016/j.biortech.2007.06.047.
- 10. He, J.G., Liu, F., Han, B.P., Zhao, B.W. & Liu, J. (2011a). Treatment of tannery wastewater with salt tolerant bacteria basing on different culture mediums, Advanced Materials Research, 403-408, 1, pp. 625-633, DOI: 10.4028/www.scientific.net/ AMR.403-408.625
- 11. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., & Luo, Z.B. (2011b). Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus x canescens, Physiologia Plantarum, 143, 1, pp. 50-63, DOI: 10.1111/j.1399- 3054.2011.01487.x.
- 12. He, J., Li, H., Luo, J., Ma, C., Li, S., Qu, L., & Luo, Z.B. (2013). A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens, Plant Physiology, 162, 1, pp. 424-439, DOI: 10.1104/ pp.113.215681.
- 13. He, J., Li, H., Ma, C., Zhang, Y., Polle, A., Rennenberg, H. & Luo, Z.B. 2015. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar, New Phytologist, 205, 1, pp. 240-254, DOI: 10.1111/nph.13013.
- 14. Hetherington, A.M., & Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change, Nature, 424, 6951, pp. 901-908, http://www.nature.com/nature/journal/v424/n6951/abs/nature01843.html.
- 15. Li, X., Ding, F., Lo, P. & Sin, S. (2002). Electrochemical disinfection of saline wastewater effluent, Journal of Environmental Engineering, 128, 8, pp. 697-704, http://dx.doi.org/10.1061/ (ASCE)0733-9372(2002)128:8(697).
- 16. Lin, B., Gao, H., & Lai, H. (2016). Spatial Characterization of Arsenic, Cadmium, and Lead Concentrations in Tobacco Leaves and Soil, Analytical Letters, 49, 10, pp. 1622-1630, DOI: 10.1080/00032719.2015.1113419.
- 17. López-Chuken, U.J. & Young, S.D. (2005). Plant Screening of Halophyte Species for Cadmium Phytoremediation, Zeitschrift für Naturforschung C, 60, 3-4, pp. 236-243, PMID:15948589).
- 18. López-Chuken, U.J. & Young, S.D. (2010). Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity, Journal of Environmental Sciences, 22, 7, pp. 1080-1085, DOI: 10.1016/ S1001-0742(09)60220-5.
- 19. López-Chuken, U.J., Young, S.D. & Guzman-Mar, J.L. (2010). Evaluating a “biotic ligand model” applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity, Environmental Technology, 31, 3, pp. 307-318, DOI: 10.1080/09593330903470685.
- 20. López-Chuken, U.J., López-Domínguez, U., Parra-Saldivar, R., Moreno, E., Hinojosa, L., Guzmán-Mar, J.L. & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced Cd uptake in (saline) agriculture: modeling Cd uptake by maize and tobacco, International, Journal of Environmental Science and Technology, 9, 1, pp. 69-77, DOI: 10.1007/s13762-011-0018-2.
- 21. Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M. & Wagner, G.J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Advances in Agronomy, 83, 1, pp. 111-118, DOI: 10.1016/S0065-2113(04)83003-7.
- 22. Pandey, S.K., & Singh, H. (2011). A Simple, Cost-Effective Method for Leaf Area Estimation, Journal of Botany, 2011, pp. 1-6, http://dx.doi.org/10.1155/2011/658240.
- 23. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, The Plant Journal, 32, 4, pp. 539-548, DOI: 10.1046/j.1365-313X.2002.01442.x.
- 24. Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J., & Kryński, K. (2004). Phytoextraction crop disposal - an unsolved problem, Environmental Pollution, 128, 3, pp. 373-379, https://www.researchgate.net/publication/8922038_Phytoextractioncrop_Disposal-an_Unsolved_Problem.
- 25. Tipping, E., Rey-Castro, C., Bryan, S.E., & Hamilton-Taylor, J. (2002). “Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimica et Cosmochimica Acta, 66, 18, pp. 3211-3224, DOI: 10.1016/ S0016-7037(02)00930-4.
- 26. United Nations. (2021). “Sustainable Development Goals.” Accessed 27 February 2021, https://www.un.org/sustainabledevelopment/sustainable-development-goals/.
- 27. Wang, X., Cheng, S., Zhang, X., Li, X. &. Logan, B.E. (2005). Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 36, 21, pp. 13900-13906, DOI: 10.1016/j.ijhydene.2011.03.052.
- 28. Wani, P.A., Khan, M.S. & Zaidi, A. (2005). Toxic effects of heavy metals on germination and physiological processes of plants.” In: Toxicity of heavy metals to legumes and bioremediation, edited by A. Zaidi, P.A. Wani, & Khan M.S. Springer, Netherlands, pp. 45-66, DOI: 10.1007/978-3-7091-0730-0.
- 29. Weggler-Beaton, K., McLaughlin, M.J., & Graham, R.D. (2000). Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids, Australian Journal of Soil Research, 38, 1, pp. 37-45, DOI: 10.1071/SR99028.
- 30. Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, Journal of Experimental Botany, 59, 12, pp. 3317-3325, DOI: 10.1093/jxb/ern185.
- 31. Yadav, A.K., Pathak, B., & Fulekar, M.H. (2015). Rhizofiltration of Heavy Metals (Cadmium, Lead and Zinc) From Fly Ash Leachates Using Water Hyacinth (Eichhornia crassipes), International Journal of Environment, 4, 1, pp. 179-196, DOI: 10.3126/ije.v4i1.12187.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9efa8b6-f798-4f2c-ad29-78943c18d4ce