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Abstract 
This author presents models of processes taking place at a waterway intersection. The measures of traffic pro-

cesses under consideration are the number of vessels waiting to enter an intersection and delay time of these 

vessels. The applicability of specific models is discussed along with their usefulness as a function if input in-

tensity of vessel stream flowing into a waterway intersection. 

 

 

Introduction 

An intersection of waterways is a major element 

of waterway infrastructure. The area of intersection 

may be affected by such phenomena as excessive 

approach of vessels or delayed traffic. Two fair-

ways crossing each other is the most common type 

of intersection. Its specific type is the one where 

a fairway is cut by a ferry shuttle route with ferry 

traffic moving across the fairway. Research prob-

lems related to the safety at an intersection are dis-

cussed in studies [1, 2, 3, 4, 5, 6, 7], at the time of 

delay that occurs in the traffic process has been 

analysed in the works [6, 8] and others. 

Problems of delays in water intersection traffic 

directly affect safety. Vessels which have to give 

way at an intersection must either reduce their 

speed or stop before an intersection. Both manoeu-

vres are not safe, because ships proceeding at slow 

speed below a certain value typical of the given 

type of vessel may lose their manoeuvrability.  

Besides, a stopping vessel must be careful because 

it has to maintain its track within the certain area  

of approach to a given waterway intersection. 

Therefore, we should pay particular attention to 

phenomena related to:  

 times of delay that occur in the traffic process; 

 number of vessels waiting to enter the intersec-

tion. 

Measures describing the above phenomena may 

be defined analytically [7, 8, 9] using the method of 

deterministic analysis or by the determination of 

characteristics using computer simulation. Due to 

the fact that in publications to date either parame-

ters such as delay times or the number of waiting 

vessels have been determined, this article attempts 

to synthesize solutions used so far and verifies the 

applicability of individual methods. 

Formulation of the problem 

An example diagram of an intersection traffic 

process has a form presented in figure 1. 

 

Fig. 1. Process of intersection traffic [6] 

Vessels proceeding in the fairway make up 

a stream with an intensity λw(t), herein referred to as 

the longitudinal stream. Vessels crossing the fair-

way make up a stream with an intensity λp(t), called 

here the cross traffic. Vessels move at a speed vw in 

the longitudinal stream and vp in the cross stream.  

Analysing traffic processes in real systems we 

can observe that generally one of the fairways is 
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constantly privileged at an intersection. In the  

examined case we assume that vessels of the longi-

tudinal stream have the right of way relative to the 

cross stream vessels. The intensity of longitudinal 

traffic at the intersection subsystem input is denoted 

as λwin(t), and at its output – λwout(t). As vessels in 

the longitudinal traffic – along the fairway – are 

privileged, this relationship takes place: 

    tλtλ ww outin   [1/h] (1) 

In the cross traffic a stream of vessels with the 

intensity λpin(t) enters the intersection, while a 

stream of vessels with the intensity λpout(t) leaves 

the intersection. As these vessels cannot enter the 

intersection at any time as they are obliged to give 

way to vessels moving along the fairway (longitu-

dinal stream), the intensities λpin(t) and λpout(t) do 

not have to be equal. Due to the fact cross traffic 

vessels have to wait for a fairway vessel to clear the 

intersection, there may be a number of cross traffic 

vessels waiting – No(t). 

The distance covered by a fairway vessel along 

the intersection is denoted lp, while lw is the dis-

tance covered by a crossing vessel. It is worth not-

ing that the section lp for the privileged vessel plays 

a warning role only. The section lw for the subordi-

nate vessel is of major importance. A vessel can 

find itself within this section only when adopted 

safety requirements have been satisfied.  

Let us assume that a crossing vessel may enter 

the intersection (section lw), if all the conditions 

given below are satisfied: 

– the stern of a fairway vessel is at least at a dis-

tance lr away from the point of intersection of 

routes; 

– a crossing vessel will be able to leave the section 

lw before a fairway vessel reaches a point defin-

ing the distance lb from the point of route inter-

section; 

– preceding vessel of the same traffic stream is at 

a minimum admissible distance lmin. 

Figure 1 presents a graph of the traffic process at 

an intersection.  

Vessels in the cross stream that may enter the  

intersection without delay form a stream with the 

intensity λbo(t). When a longitudinal stream vessel 

proceeding along the fairway is at a distance shorter 

than lb, or a cross stream vessel is already waiting, 

another cross stream vessel approaching the inter-

section area stops and acquires a waiting status. 

Vessels changing their status to waiting make up 

a stream with intensity λdo(t). At the same time, 

vessels waiting start entering the intersection form-

ing a stream with intensity λzo(t). There is still 

a number of vessels No(t) with the waiting status. 

 

Fig. 2. Graph of the traffic process at a waterway intersection 

[5] 

Analytical research 

In studies [6, 7] to solve same traffic processes 

apply method used vessels traffic streams kinemat-

ics equations. Worked out method is deterministic 

in such sense, that the random variable are repre-

sent by expected value. In the analysis and con-

struction of some of the measures used some prob-

ability calculus. Simplification is assumed only 

uniform distribution as stochastic model. 

Kinematics equation traffic streams description 

is one of the main assumption of the method, and 

observation that vessels on fairway occupy some 

segment (domain) limited by his dimension and 

also by distance before bow and after stern where 

no other vessel should not be. The length of the 

segment is worth to refer to repeated vessels in the 

stream expected distance. Observation may be tak-

en in the variable of time. In this consideration, the 

vessel occupy fairway (intersection) by some time 

considered as mean recurrence vessels in the stream 

period, Entered on fairway (intersection) vessel 

with his occupancy time, encounter there situation 

(some segment location, repeated vessel period). If 

occupancy segment may be although partially cov-

ered what is unacceptable entered ship must wait. 

Probability pop to appear situation, in which ship 

will be has to wait, is described by formula [6]: 

 
inT

T
p z
op   (2) 

where: 

Tz – time of fairway occupation by a vessel (at the 

intersection, it is a sum of occupation times 

for both vessels, that is the privileged and 

subordinate vessels); 

Tin – period of vessels appearing in an exciting 

stream with an intensity in (for the intersec-

tion it is a privileged stream). 
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The mean intensity of delays will be:  

 inT

Tλ
λpλ zb
bopop 

 (3) 

where b is an intensity of the examined stream (for 

the intersection it is the subordinate stream) (give-

way vessel). 

If a delay occurs it will oscillate in the interval: 

 zop T,Δt 0
 (4) 

This author assumes that each value of the 

above interval is equally possible. This means that 

we assume a model of this phenomenon in the form 

of a uniform distribution of vessel arrival interval, 

which is an essential constraint for the applicability 

of the model formula. Based on the above con-

straint, we can claim that if a delay occurs, then the 

mean delay time top will be: 

 zop Tt 5.0
 (5) 

The total delay time of vessels moving in the 

examined stream in a certain interval t equals: 

 opopopc ttλt 
 (6) 

The resultant assessment measure is the mean 

delay time falling on one passage of a vessel in the 

examined stream, expressed as a quotient of total 

delay time topc divided by the number of vessels in 

the examined stream, appearing at time interval t. 

After transformations we obtain: 

 
2

in 2
in 

22

1

μ

λ
Tλt zop   [s] (7) 

On the other hand, the delay time of an ingoing 

vessel is equal to the number of vessels waiting No 

multiplied by the time Tz, because each of those 

vessels will be occupying the subsystem within that 

time. The inverse of time Tz is subsystem capacity  

for the examined stream. After transformations, the 

number of vessels No waiting for entering the fair-

way has this form: 

 
μ

λ

T

t
N

z

op

o
2

in    [vessels] (8) 

Of course both formulas have a physical sense 

for in < . 

To sum up, we can claim that a model devel-

oped by the above method is characterized by the 

deterministic interval between vessels in the stream, 

deterministic time of subsystem occupation by 

a vessel and random character (limited uniform 

distribution) of positions of the two time intervals 

on the time axis. After the name of the model’s 

author let us call it Piszczek’s model.  

The study [8] presents another analytical method 

which takes into account the random character of 

time intervals between vessels (limited exponential 

distribution), assuming the determinism of time of 

subsystem occupation by a vessel and random rela-

tions of positions of the two sections on the time 

axis. The developed model, also named after its 

author: Olszamowski’s model has been used for 

determining the mean waiting time for river vessels 

on crossing routes.  

The model assumes that vessels in the exciting 

stream are moving at time intervals , realizing 

Poisson’s process with the mean intensity in. Ves-

sels are treated as material points. Let Tz denote 

a time of subsystem occupation by a vessel of the 

examined stream for a fairway, or two vessels for 

an intersection. A vessel to enter the fairway (inter-

section) has to wait until the time interval  is 

greater than Tz. Olszamowski has assumed that if 

by 1, 2,3 we denote subsequent values of random 

variable of an interval between vessels of the excit-

ing stream, then we require not more than three 

subsequent samplings to draw a number  greater 

than Tz. This is an essential constraint and comes 

down to the conclusion that the following simplifi-

cations will create model adequacy to reality only 

for a deeply subcritical states. In such cases the 

periods of vessels appearance will be sufficiently 

large. Delay time is then a random variable of three 

random variables with the same exponential distri-

butions, provided that each of them separately is 

less than Tz. To determine the mean delay time we 

have to consider the distributions of random vari-

ables z2 and z3: 

 3213

212

11

τττz

ττz

τz







 (9) 

The density function of random variable z2 

probability can be determined from the resultant of 

two density functions f1 and f2, which for non-

negative , after convenient transformations due to 

the exponential distribution form, gets this form: 
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Similarly: 

      3in 

3

2
3

3
in 

0

223323
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z

ezλzzzfzgzg


   (11) 

The expected value of density function w(z) of 

waiting time distribution for a case when 1 > Tz has 

this form:  

 

  
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 (12) 

For the condition when 2 > Tz, has this form:  

 

  
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For the condition gdy 3 > Tz, has the form:  
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  (14) 

Further computational description would take 

a lot of space while we can already see that the 

model requires troublesome calculations and has 

many simplifications.  

Ultimately, if we assume the previously men-

tioned conditions and replace Tz by the inverse sub-

system capacity the mean time top of delay of 

a vessel in the examined stream has the form: 

 

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
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in 
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in 

 [h] (15) 

where:

in – input intensity of the exciting stream [1/h];

 – subsystem capacity for the examined stream 

b [1/h]. 

In publication [8] there are no more derivations 

of relations of interest to us. Therefore we have to 

independently derive the relation for the mean 

number of waiting vessels No. The number can be 

determined from the relation stating that the de-

layed time of moving vessel is equal to the number 

of waiting vessels No multiplied by time Tz, because 

each of them will be occupying the subsystem over 

that time. The inverse of time Tz is the subsystem 

capacity  for the examined stream. After substitu-

tions and transformations, the relation expressing 

the mean number of waiting status vessels No has 

this form: 
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  [vessels] (16) 

To sum up, we can state that the model devel-

oped by the above method has a random character 

(exponential distribution) of the time interval be-

tween vessels, deterministic time of subsystem 

occupation by a vessel and random positions of the 

two intervals on the time axis. 

Another analytical method is the method of 

mass service applied to a classical model presented 

in publication [9]. The model known as Guten-

baum’s model named after its creator, takes into 

account the random character of time interval be-

tween vessels (exponential distribution), random 

time of subsystem occupation by a vessel (exponen-

tial distribution) and random relations of the posi-

tions of two time intervals on the time axis. The 

degree to which the processes are random is in this 

case the greatest. Exponential distributions are 

without a memory, because random realizations are 

independent. We have transformed the model from 

[9] to the notation and interpretation of the exam-

ined intersection subsystem. The mean number of 

vessels waiting for subsystem entry has been de-

termined. This model distinguishes a set of four 

basic events and assumes a short time interval t, 

sufficient for only one vessel to arrive or leave. The 

probability of an event such that, at instant (t + t) 

at the subsystem entrance there will be n (n > 0) 

vessels waiting is equal to the sum of probabilities 

of four independent compound events: 

1. An event in which at instant t the number of 

waiting vessels was n, and at time interval t no 

new vessel went into or out of the subsystem. 

2. An event in which at instant t the number of 

waiting vessels was n
 
–

 
1, and at time interval t 

one vessel went into, but none went out of the 

subsystem. 

3. An event in which at instant t the number of 

waiting vessels was n
 
+

 
1, and at time interval t 

one vessel went out, but none went into the sub-

system. 

4. An event in which at instant t the number of 

waiting vessels was n, and at time interval t 

one vessel went into, and one went out of the 

subsystem. 

In the next step, probabilities of these events are 

computed, components with t
2
 are rejected as 
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insignificant, and two basic differential equations 

are formulated, models of the phenomenon under 

consideration. The equations relate probabilities of 

n waiting vessels occurrence and have these forms:  

 

 
       
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 

  

  (17) 

Solving these equations in respect to time would 

allow to analyze quasi-stationary and dynamic pro-

cesses. However, this author assumes a constant 

number of vessels in time, that is the stationary 

character of the process in this form Pn(t) = const. 

Then, naturally, all derivatives of the time function 

Pn(t) assume zero value, differential equations turn 

into difference equations and the solution becomes 

simpler.  

Finally, expected value of the number of waiting 

status vessels No assume value according formula 

[9]: 

 
in 

in 

λμ

λ
No


   [vesseles] (18) 

where: 

in – input intensity of the exciting stream [1/h]; 

 – subsystem capacity [1/h]. 

On this, J. Gutenbaum [1] finished his consider-

ations. It must be continued his idea to derive 

a formula of the mean time top of delay of a vessel 

in the examined stream cause to waiting to subsys-

tem. The basic is remark, that each waiting vessels 

after finish waiting cause occupy subsystem on 

time Tz, which are capacity inverse  on examine 

subsystem. On this base the mean time top of delay 

of a vessel cause to waiting to subsystem, on vessel 

has this form: 

 
 in 

in 

λμμ

λ

μ

N
t o
op


   [h/vesseles] (19) 

where: 

in – input intensity of the exciting stream [1/h]; 

 – subsystem capacity [1/h]; 

No – the mean number of waiting status vessels. 

Phenomena existed in transport systems are ran-

dom phenomena Nevertheless often expected value 

of random variable (mean value) is used in analysis 

of completed processes For input intensity value in 

less when capacity  traffic on intersection are 

without delay:  

 
]1[0
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

o
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N
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When in achieve capacity value , both the 

mean time top of delay of the vessels and the mean 

number of waiting status vessels strive to infinity: 
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o
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N

t
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Of course, above relations are true if infinity 

time horizon of working system are considered. 

Examples  

We have chosen numerical values of simulation 

parameters to render possibly accurate image of the 

situation described by Olszamowski’s model, be-

cause only this analytical model at the same time 

considers the intersection of (river) vessels tracks / 

routes, and Poisson’s process of the exciting stream 

vessel entries. This has led to certain simplifica-

tions compatible with this model, but not with reali-

ty, for example privileged vessels are regarded as 

material points whose track can be crossed closely 

ahead or astern. Does not change the curves qualita-

tively, but overestimates the value of capacity . 

This happens because the intersection occupation 

time Tz is additive, therefore it is a sum of compo-

nents of the vessels proceeding in both directions. 

The following assumptions are made for the  

investigation: 

 a homogeneous stream of vessels is moving as 

a privileged traffic on the fairway; 

 a period of vessel appearance in that stream is 

described by an exponential distribution with 

a mean value Tin [s], that is intensity in = 1/Tin; 

 speed of vessels in the privileged stream is con-

stant and equal to vw = 6 kn (3.09 m/s); 

 fairway width is lw = 100 m; 

 length of the vessel in the subordinate traffic is 

Lp = 50 m; 

 speed of the vessel in the subordinate traffic is  

vp = 5 kn (2.57 m/s); 

 period of appearance of vessels in the subordi-

nate stream is constant Tp = 1800 s (correspond-

ing to the intensity p = 2 vessels/h). 

We have performed a series of simulation exper-

iments for the above determinants, aimed at the 

verification of the results in comparison to the  

presented methods, adapted and used for example 

calculations. In the tests the input intensity of excit-

ing streams was being increased from zero to the 

value of capacity . 

Figure 3 presents the mean delay time top falling 

on a vessel of the subordinate traffic as a function 

of the period Tin of vessels present in the privileged 

stream, obtained from the tests of these models: 
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– Gutenbaum’s; 

– simulation; 

– Olszamowski’s; 

– Piszczek’s; 

– deterministic. 

You will see in the diagram a considerable simi-

larity of the results obtained by all methods for 

deeply subcritical states (privileged vessels pro-

ceeding every hour). Olszamowski’s and Piszczek’s 

models give fully convergent results for a period as 

long as ten minutes.  

For untypical conditions, where the period Tin of 

vessels appearance tends to 1/, the curves of time 

delay obtained from tests performed by all methods 

have a similar shape. As Tin decreases, top tends to 

infinity in the simulation and Gutenbaum’s models, 

in the deterministic model assumes the infinite val-

ue for Tin = 1/ (when Tin > 1/ – top = 0), while for 

 

Fig. 3. Mean delay time top [s] of a vessel in the subordinate stream as a function of the mean period Tin [s]of vessels’ appearance in 

the privileged stream [own study] 

 

Fig. 4. Mean number of vessels No in the subordinate stream with a waiting status as a function of input intensity of the privileged 

stream in [own study] 
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the remaining models, time delay has finite values. 

The reason is that in critical and supercritical states 

the delay time tends to infinity. Delay time are cal-

culated from analytical Olszamowski’s and Pisz-

czek’s models for Tin = 1/ assume finite values, 

which is naturally an effect of simplifications 

adopted while at the stage deriving the relation-

ships. 

Figure 4 presents a mean number No of vessels 

in the subordinate stream, waiting to enter the inter-

section as a function of privileged traffic intensity 

in, obtained from tests of the same models. 

In reference to the results generated by the simu-

lation model, 95% confidence intervals have also 

been marked. The simulation model results are 

contained within the entire variation interval above 

the curves representing the results from analytical 

Olszamowski and Piszczek models. We can make 

a hypothesis that it is due to the above mentioned 

assumptions for the situation modelled and the 

adoption of an exponential distribution without 

displacement in the privileged stream model. This 

confirms a thesis that there is a wide range of pos-

sible curves in an area of feasible solutions (ac-

ceptable in reality), that is in an area enclosed by 

Gutenbaum’s model curve and a polyline of the 

deterministic model. The establishment of accurate 

curves of the tested functions, including a possible 

choice of an analytical model, is possible provided 

that we build a precise identification model. 

Conclusions 

From the research performed this author can 

formulate the following conclusions: 

 results of Olszamowski’s and Piszczek’s models 

are similar to the results of the simulation meth-

od for deeply subcritical states; 

 simulation method for quasi-critical and critical 

states brings acceptable results, contrary to the 

results obtained by analytical methods; 

 for supercritical states analytical models are 

declaratively not applicable, while simulation 

methods cope well with such states; 

 Gutenbaum’s model and results of a determinis-

tic analysis define an area of acceptable values 

for a simulation model, so they may act as pre-

liminary verifier of the logical correctness of 

simulation tests. 

The choice of a model depends on the objective 

and the input intensity-capacity ratio, but from 

a wide perspective we can state that the simulation 

method is the most universal one, performing well 

in subcritical and quasi-critical states. 
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