Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article proposes a method of combining CloudCompare, RHINO, and FLAC3D software, aimed at building numerical models of underground objects of natural or engineering origin, based on the results of measurements made using terrestrial laser scanning technology. This technology is one of the most advanced in mine survey as it enables accurate mapping of even the most complex geometries of underground facilities. This opens wide possibilities in the construction of more accurate numerical models of the behavior of the rock mass around such underground objects. The results of simulation of the behavior of the rock mass around the analyzed excavations, obtained by performing numerical calculations, allow predicting unfavorable phenomena that may occur as a result of the destruction of the rock mass and which may threaten the safety of users of underground facilities, for example, caves, tunnels, and mining excavations. In this work, we carried out measurements using a terrestrial laser scanner and obtained a “point cloud” that reproduced the geometry of the underground facility. An example is a fragment of the adit St. Johannes, which is part of the underground tourist route “Geopark” St. Johannes Mine in Krobica in Lower Silesia in Poland in the neighborhood of Gierczyn and Przecznica. In the next step, the measurement results were processed, so that it was possible to import the generated geometry into the FLAC3D software and use it to build a numerical model of the adit, based on “brick” zones. The aim of the article is to present in detail the methodology of geometrization of numerical models of underground objects with complex geometry. The author wanted the method to be as easy to use as possible, give full control over the surface structure, and not require many numerical modeling programs.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
184--192
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- University of Science and Technology, Faculty of Civil Engineering. Department of Geotechnology, Hydro Technology, and Underground and Hydro EngineeringPoland
Bibliografia
- [1] Fuławka, K., Pytel, W., Szumny, M., Mertuszka, P., Pałac-Walko, B., Hartlieb, P., Jakić, M., Nöger, M., (2022). Prototype of Instrumented Rock Bolt for Continuous Monitoring of Roof Fall Hazard in Deep Underground Mines. Sensors, 23(1), 154. https://doi.org/10.3390/s23010154.
- [2] Fuławka, K., Stolecki, L., Szumny, M., Pytel, W., Jaśkiewicz-Proć, I., Jakić, M., Nöger, M., Hartlieb, P., (2022). Roof Fall Hazard Monitoring and Evaluation—State-of-the-Art Review. Energies, 15(21), 8312. https://doi.org/10.3390/en15218312
- [3] Mao, J.Z., Zuo, G., (2017). Modeling method of FLAC3D based on RHINO-KUBRIX and deformation analysis of tunnel lining structure. Advances in Engineering Research, 112, pp. 520–528. http://doi.org/10.2991/icreet-16.2017.87.
- [4] Wang, S., Zhang, Q., (2010). A Coupling Modeling Method with MIDAS/GTS-FLAC 3D and Its Application. Journal of Civil, Architectural & Environmental Engineering, 32(1), pp. 12-17.
- [5] Kajzar, V., Kukutsch, R., Heroldová, N., (2015). Verifying the possibilities of using a 3D laser scanner in the mining underground. Acta Geodynamica et Geomaterialia 12(1), 177. https://doi.org/10.13168/AGG.2015.0004
- [6] Maciaszek, J., Gawałkiewicz, R., Gawałkiewicz, I., (2010). Od modelu do numerycznej mapy przestrzennej. Geologia, 36(3), pp. 331-344. (in polish)
- [7] Janus, J., Ostrogórski, P. (2022). Underground Mine Tunnel Modelling Using Laser Scan Data in Relation to Manual Geometry Measurements. Energies 15(7), 2537. https://doi.org/10.3390/en15072537
- [8] Fekete, S., Diederichs, M., Lato, M. (2010). Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunnelling and Underground Space Technology 25(5), pp.614-628. https://doi.org/10.1016/j.tust.2010.04.008
- [9] Cieślik, J., Flisiak, J., Tajduś, A., (2009). Analiza warunków stateczności wybranych komór KS „Wieliczka” na podstawie przestrzennych obliczeń numerycznych. Górnictwo i Geoinżynieria, 33(3/1), pp. 91-102 (in polish)
- [10] D’Obryn, K., Hydzik-Wiśniewska, J., (2013). Selected aspects of numerical modelling of the salt rock mass: the case of the „Wieliczka” salt mine. Archives of Mining Sciences, Vol. 58 (2013), No 1, p. 73–88. DOI:10.2478/AMSC-2013-0005
- [11] D’Obryn, K., Hydzik-Wiśniewska, J., (2017). Assessment of rock mass stability in the historic area of levels IV-V of the „Wieliczka” salt mine of the „Wieliczka” salt mine. Archives of Mining Sciences, Vol. 62 , No 1, p. 189-202. DOI 10.1515/amsc-2017-0014
- [12] Bock, S., (2015) New open-source ANSYS-SolidWorks-FLAC3D geometry conversion programs. Journal of sustainable mining, 14, pp. 124-132 https://doi.org/10.1016/j.jsm.2015.11.002
- [13] Madziarz, M. (2012). Historical ore mining sites in Lower Silesia (Poland) as geo-tourism and industrial tourism attraction. International Twin Conference GEOTOUR & IRSE 2012 Geoparks, Geoheritage and Geoconservation IRSE: History of Central European Mining, Salgótarján, Hungary 04–06 October. https://doi.org/10.13140/RG.2.1.3702.4803
- [14] Pytel, W., Fuławka, K., Pałac-Walko, B., Mertuszka, P., (2023). Numerical and Analytical Determination of Rockburst Characteristics: Case Study from Polish Deep Copper Mine. Applied Sciences, 13(21), 11881. https://doi.org/10.3390/ app132111881
- [15] CloudCompare - Open Source project . 3D point cloud and mesh processing software.
- [16] FLAC (FLAC2D/FLAC3D) — Itasca Software 9.0 documentation (itascacg.com). Itasca Consulting Group
- [17] Trimble Inc.: Laser scanner TX8 technical data sheet
- [18] Trimble RealWorks - Trimble Geospatial. Point cloud processing and analysis software for 3D laser scanning professionals.
- [19] Rhino - Rhinoceros 3D. Design, Model, Present, Analyze, Realize... (rhino3d.com)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9e0ee1e-a854-4780-8763-a4d07c74fe98