PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A parametric testing of the firefly algorithm in the determination of the optimal osmotic drying parameters of mushrooms

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Firefly Algorithm (FA) is employed to determine the optimal parameter settings in a case study of the osmotic dehydration process of mushrooms. In the case, the functional form of the dehydration model is established through a response surface technique and the resulting mathematical programming is formulated as a non-linear goal programming model. For optimization purposes, a computationally efficient, FA-driven method is used and the resulting optimal process parameters are shown to be superior to those from previous approaches. The final section of this study provides a computational experimentation performed on the FA to analyze its relative sensitivity over a range of the two key parameters that most influence its running time.
Rocznik
Strony
257--256
Opis fizyczny
Buibliogr. 31 poz., rys.
Twórcy
autor
  • OMIS Area, Schulich School of Business, York University Toronto, ON, M3J 1P3 Canada
Bibliografia
  • [1] Geohive World Crop Production www.geohive.com/charts/ag crops.aspx 2014.
  • [2] B.K. Mehta, S.K. Jain, G.P. Sharma, V.D. Mugdal, R.C. Verma, A. Doshi and H.K. Jain, Optimization of Osmotic Drying Parameters for Button Mushroom (Agaricus bisporus), Applied Mathematics, 3(10A), 2012, 1298-1305.
  • [3] M.E. Venturini, J.E. Reyes, C.S. Rivera, R. Oria and D. Blanco, Microbiological Quality and Safety of Fresh Cultivated and Wild Mushrooms Commercialized in Spain, Food Microbiology, 28(8), 2011, 1492-1498.
  • [4] M.D. Rosa and F. Giroux, Osmotic treatments and problems related to the solution management, Journal of Food Engineering, 49(3), 2001, 223–236.
  • [5] S.K. Jain and R.C. Verma, Osmotic dehydration: A new, promising and emerging industry, Beverage and Food World, 30(1), 2003, 30–34.
  • [6] N.K. Rastogi, K.S.M.S. Raghavarao, K. Niranjan and D. Knorr, Recent developments in osmotic dehydration: Method to enhance mass transfer, Food Science Technology, 13(1), 2002, 48–59.
  • [7] J. Hawkes and J.M. Fink, Osmotic Concentration of Fruit Slices Prior to Dehydration, Food Processing Preservation, 2(4), 1978, 265-267.
  • [8] B.D. Shukla and S.P. Singh, Osmo-Convective Drying of Cauliflower, Mushroom and Green Pea, Food Engineering, 80(2), 2007, 741-747.
  • [9] R.V. Tonon, A.F. Baroni and M.D. Hubinges, Osmotic Dehydration of Tomato in Ternary Solutions: Influence of Process Variables on Mass Transfer Kinetics and an Evaluation of the Retention of Arytenoids, Food Engineering, 82(4), 2007, 509-517.
  • [10] A. Nieto, M.A. Castro and A. Alzamora, Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango, Journal of Food Engineering, 50(2), 2001, 175–185.
  • [11] S.K. Jain, R.C. Verma, L.K. Murdia, H.K. Jain and G.P. Sharma, Optimization of Process Parameters for Osmotic Dehydration of Papaya Cubes, Food Science and Technology, 48(2), 2011, 211-217.
  • [12] A. Kar and D.K. Gupta, Osmotic dehydration characteristics of button mushrooms, Journal of Food Science and Technology, 38(4), 2001, 352–357.
  • [13] N.S. Sodhi, N. Singh and K. Komal, Osmotic dehydration kinetics of carrots, Journal of Food Science and Technology, 43(4), 2006, 374–376.
  • [14] D. Torreggiani and G. Bertolo, Osmotic pretreatments in fruit processing: chemical, physical and structural effects, Journal of Food Engineering, 49(30), 2001, 247–253.
  • [15] R. Imanirad and J.S. Yeomans, Fireflies in the Fruits and Vegetables: Combining the Firefly Algorithm with Goal Programming for Setting Optimal Osmotic Dehydration Parameters of Produce, in Recent Advances in Swarm Intelligence and Evolutionary Computation. X-S. Yang (ed.), Springer, Heidelberg, Germany, 2015, 49-69.
  • [16] J.S. Yeomans, Computing Optimal Food Drying Parameters Using the Firefly Algorithm, Journal on Computing, 4(1), 2014a, 40-44.
  • [17] J.S. Yeomans, Establishing Optimal Dehydration Process Parameters for Papaya By Employing A Firefly Algorithm, Goal Programming Approach, International Journal of Engineering Research and Applications, 4(9), 2014b, 145-149.
  • [18] J.S. Yeomans and X.S. Yang, Determining Optimal Osmotic Drying Parameters Using the Firefly Algorithm, International Conference on Applied Operational Research (ICAOR), Vancouver, Canada, July 29-31, 2014a.
  • [19] G.E. Box and D.W. Behnken, Some New Three Level Designs for the Study of Quantitative Three Variables, Technometrics, 2(4), 1960, 455-475.
  • [20] R.H. Myers and D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, New York, USA, 1995.
  • [21] D.C. Montgomery, Design and Analysis of Experiments 4th Ed., John Wiley and Sons, New York, USA, 1997.
  • [22] R. Imanirad, X.S. Yang, and J.S. Yeomans, Modelling-to-Generate-Alternatives Via the Firefly Algorithm, Journal of Applied Operational Research, 5(1), 2013, 14-21.
  • [23] X.S. Yang, Nature-Inspired Metaheuristic Algorithms 2nd Ed., Luniver Press, Frome, UK, 2010.
  • [24] J.S. Yeomans and X.S. Yang, Municipal Waste Management Optimization Using A Firefly Algorithm-Driven Simulation-Optimization Approach, International Journal of Process Management and Benchmarking, 4(4), 2014b, 63-375.
  • [25] J.S. Yeomans and R. Imanirad, A Parametric Testing of the Firefly Algorithm in the Determination of the Optimal Osmotic Drying Parameters for Papaya, IEEE Symposium Series on Computational Intelligence (IEEE SSCI) Special Session on Theory and Applications of Nature-Inspired Optimization Algorithms, Orlando, USA, December 9-12, 2014.
  • [26] M.S. Alam, A. Singh and B.K. Sawhney, Response Surface Optimization of Osmotic Dehydration Process for Aonla Slices, Food Science Technology, 47(1), 2010, 47-54.
  • [27] G.S. Mudhar, R.T. Toledo, J.D. Floros and J.J. Jen, Optimization of carrot dehydration process using response surface methodology, Journal of Food Science, 54(11), 1989, 714–719.
  • [28] L. Shi, C.H. Xue, Y. Zhao, Z.J. Li, X.Y. Wang and D.L. Luan, Optimization of Processing Parameters of Horse Mackerel (Trachurus Japonicus) Dried in a Heat Pump Dehumidifier Using Response Surface Methodology, Food Engineering, 87(1), 2008, 74-81.
  • [29] M.B. Uddin, P. Amsworth and S. Ibanoglu, Evaluation of Mass Exchange during Osmotic Dehydration of Carrots Using Response Surface Methodology, Food Engineering, 65(4), 2004, 473-477.
  • [30] S. Ranganna, Handbook of analysis and quality control for fruits and vegetable products, Tata Mc-Graw Hill Publishing, New Delhi, India, 1986.
  • [31] J.S. Yeomans, Simulation-Driven Optimization in Waste Management Facility Expansion Planning, Journal of Computational Methods in Sciences and Engineering, 12(1/2), 2012, 111-127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9de64c3-7844-4a1e-9499-de548fd2293a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.