PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asesment of state-of-the-art methods for bridge inspection: case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena najnowocześniejszych metod stosowanych do inspekcji mostów: studium przypadku
Języki publikacji
EN
Abstrakty
EN
Despite the progress in digitization of civil engineering, the process of bridge inspection is still outdated. In most cases, its documentation consists of notes, sketches and photos. This results in significant data loss during structure maintenance and can even lead to critical failures. As a solution to this problem, many researchers see the use of modern technologies that are gaining popularity in civil engineering. Namely Building Information Modelling (BIM), 3D reconstruction and Artificial Intelligence (AI). However, despite their work, no particular solution was implemented. In this article, we evaluated the applicability of state-of-the-art methods based on a case study. We have considered each step starting from data acquisition and ending on BIM model enrichment. Additionally, the comparison of deep learning crack semantic segmentation algorithm with human inspector was performed. Authors believe that this kind of work is crucial for further advancements in the field of bridge maintenance.
PL
Pomimo postępu w cyfryzacji budownictwa, proces inspekcji mostów jest nadal przestarzały. W większości przypadków jego dokumentacja składa się z notatek, szkiców i zdjęć. Powoduje to znaczną utratę danych podczas fazy utrzymania konstrukcji, a nawet może prowadzić do awarii. Wielu badaczy jako rozwiązanie tego problemu upatruje w wykorzystaniu nowoczesnych technologii, które zyskują na popularności w inżynierii lądowej. Technologii takich jak modelowanie informacji o budynku (BIM), rekonstrukcja 3D i sztuczna inteligencja (AI). Jednak pomimo wykonanej do tej pory pracy nie zaimplementowano żadnego konkretnego rozwiązania. W tym artykule oceniliśmy przydatność tych najnowocześniejszych metod na podstawie studium przypadku. Rozważaliśmy każdy krok począwszy od pozyskania danych, a skończywszy na wzbogaceniu modelu BIM. Ponadto przeprowadzono porównanie algorytmu segmentacji semantycznej pęknięć w uczeniu głębokim z ludzkim inspektorem. Uważamy, że tego rodzaju prace są kluczowe dla dalszych postępów w utrzymaniu mostów.
Rocznik
Strony
343--362
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
  • Chung-Ang University, School of Architecture and Building Science, Seoul, Republic of Korea
autor
  • Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
  • Chung-Ang University, School of Architecture and Building Science, Seoul, Republic of Korea
Bibliografia
  • [1] F. Gatti, “Crollo Ponte Genova, tiranti ‘ridotti del venti per cento’: Ministero e Autostrade sapevano [Collapse of Genoa bridge, tendons ‘reduced by twenty percent’: the Ministry and the Highways knew],” L’Espresso, 2018. [Online]. Available: https://espresso.repubblica.it/inchieste/2018/08/19/news/genova-tiranti-su-ponte-morandiridotti-del-20-per-cento-ministero-e-autostrade-sapevano-1.326085.
  • [2] B. M. Phares, G. A. Washer, D. D. Rolander, B. A. Graybeal, and M. Moore, “Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability,” J. Bridg. Eng., vol. 9, no. 4, pp. 403-413, Jul. 2004.
  • [3] J. S. Kong and D. M. Frangopol, “Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges,” J. Struct. Eng., vol. 129, no. 6, pp. 818-828, Jun. 2003.
  • [4] A. Costin, A. Adibfar, H. Hu, and S. S. Chen, “Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations,” Autom. Constr., vol. 94, no. June, pp. 257-281, 2018.
  • [5] J. Bień, “Modelling of structure geometry in Bridge Management Systems,” Arch. Civ. Mech. Eng., vol. 11, no. 3, pp. 519-532, Jan. 2011.
  • [6] C. Eastman, R. Sacks, G. Lee, and P. Teicholz, BIM Handbook. Hoboken, New Jersey: John Wiley & Sons, Inc., 2018.
  • [7] Q. Wang and M. K. Kim, “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018,” Adv. Eng. Informatics, vol. 39, no. September 2018, pp. 306-319, 2019.
  • [8] G. Teza, A. Galgaro, and F. Moro, “Contactless recognition of concrete surface damage from laser scanning and curvature computation,” NDT E Int., vol. 42, no. 4, pp. 240-249, 2009.
  • [9] A. Janowski, K. Nagrodzka-Godycka, J. Szulwic, and P. Ziółkowski, “Modes of Failure Analysis in Reinforced Concrete Beam Using Laser Scanning and Synchro-Photogrammetry,” Second Int. Conf. Adv. Civil, Struct. Environ. Eng. 2014, pp. 16-20, 2014.
  • [10] M.-K. Kim, H. Sohn, and C.-C. Chang, “Localization and Quantification of Concrete Spalling Defects Using Terrestrial Laser Scanning,” J. Comput. Civ. Eng., vol. 29, no. 6, p. 04014086, Nov. 2015.
  • [11] B. Guldur Erkal and J. F. Hajjar, “Laser-based surface damage detection and quantification using predicted surface properties,” Autom. Constr., vol. 83, no. September 2016, pp. 285-302, 2017.
  • [12] M. K. Kim, Q. Wang, and H. Li, “Non-contact sensing based geometric quality assessment of buildings and civil structures: A review,” Autom. Constr., vol. 100, no. December 2018, pp. 163-179, 2019.
  • [13] M. Ochmański, G. Modoni, and J. Bzówka, “Prediction of the diameter of jet grouting columns with artificial neural networks,” Soils Found., vol. 55, no. 2, pp. 425-436, Apr. 2015.
  • [14] X. Wu, J. Ghaboussi, and J. H. Garrett, “Use of neural networks in detection of structural damage,” Comput. Struct., vol. 42, no. 4, pp. 649-659, Feb. 1992.
  • [15] M. Rabah, A. Elhattab, and A. Fayad, “Automatic concrete cracks detection and mapping of terrestrial laser scan data,” NRIAG J. Astron. Geophys., vol. 2, no. 2, pp. 250-255, Dec. 2013.
  • [16] S. Li, X. Zhao, and G. Zhou, “Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network,” Comput. Civ. Infrastruct. Eng., vol. 34, no. 7, pp. 616-634, 2019.
  • [17] G. Li, X. Zhao, K. Du, F. Ru, and Y. Zhang, “Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine,” Autom. Constr., vol. 78, pp. 51-61, Jun. 2017.
  • [18] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 5, pp. 361-378, 2017.
  • [19] Q. Mei, M. Gül, and M. R. Azim, “Densely connected deep neural network considering connectivity of pixels for automatic crack detection,” Autom. Constr., vol. 110, no. June 2019, p. 103018, Feb. 2020.
  • [20] C. V. Dung and L. D. Anh, “Autonomous concrete crack detection using deep fully convolutional neural network,” Autom. Constr., vol. 99, pp. 52-58, Mar. 2019.
  • [21] X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang, “Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network,” Comput. Civ. Infrastruct. Eng., vol. 33, no. 12, pp. 1090-1109, Dec. 2018.
  • [22] “SeeBridge.” [Online]. Available: https://seebridge.net.technion.ac.il/.
  • [23] R. Sacks et al., “SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition,” Autom. Constr., vol. 90, no. February, pp. 134-145, 2018.
  • [24] P. Hüthwohl, I. Brilakis, A. Borrmann, and R. Sacks, “Integrating RC Bridge Defect Information into BIM Models,” J. Comput. Civ. Eng., vol. 32, no. 3, 2018.
  • [25] P. Hüthwohl and I. Brilakis, “Detecting healthy concrete surfaces,” Adv. Eng. Informatics, vol. 37, no. May, pp. 150-162, 2018.
  • [26] P. Hüthwohl, R. Lu, and I. Brilakis, “Multi-classifier for reinforced concrete bridge defects,” Autom. Constr., vol. 105, no. December 2018, p. 102824, 2019.
  • [27] C. S. Shim, N. S. Dang, S. Lon, and C. H. Jeon, “Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model,” Struct. Infrastruct. Eng., vol. 15, no. 10, pp. 1319-1332, 2019.
  • [28] D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, and J. Döllner, “Bridge damage: Detection, IFCbased semantic enrichment and visualization,” Autom. Constr., vol. 112, no. May 2019, p. 103088, Apr. 2020.
  • [29] Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, “DeepCrack: A deep hierarchical feature learning architecture for crack segmentation,” Neurocomputing, vol. 338, pp. 139-153, 2019.
  • [30] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU, and CPU Platforms for Deep Learning,” 2019.
  • [31] T. Krijnen and J. Beetz, “An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models,” Adv. Eng. Informatics, vol. 33, no. 2017, pp. 473-490, 2017.
  • [32] N. Statham, “Use of Photogrammetry in Video Games: A Historical Overview,” Games Cult., pp. 1-19, 2018.
  • [33] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 1-4.
  • [34] S. Lockley, C. Benghi, and M. Černý, “Xbim.Essentials: a library for interoperable building information applications,” J. Open Source Softw., vol. 2, no. 20, p. 473, 2017.
  • [35] “Emgu CV,” 2020. [Online]. Available: http://www.emgu.com.
  • [36] M. D. Phung, C. H. Quach, T. H. Dinh, and Q. Ha, “Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection,” Autom. Constr., vol. 81, no. April, pp. 25-33, 2017.
  • [37] A. González-Sieira, D. Cores, M. Mucientes, and A. Bugarín, “Autonomous navigation for UAVs managing motion and sensing uncertainty,” Rob. Auton. Syst., vol. 126, p. 103455, 2020.
  • [38] R. Augustauskas and A. Lipnickas, “Improved Pixel-Level Pavement-Defect Segmentation Using a Deep Autoencoder,” Sensors, vol. 20, no. 9, p. 2557, Apr. 2020.
  • [39] J. Yang, W. Wang, G. Lin, Q. Li, Y. Sun, and Y. Sun, “Infrared Thermal Imaging-Based Crack Detection Using Deep Learning,” IEEE Access, vol. 7, pp. 182060-182077, 2019.
  • [40] W. Wang, A. Zhang, K. C. P. Wang, A. F. Braham, and S. Qiu, “Pavement Crack Width Measurement Based on Laplace’s Equation for Continuity and Unambiguity,” Comput. Civ. Infrastruct. Eng., vol. 33, no. 2, pp. 110-123, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9dd66b1-fb84-438b-8053-fcca1a45fd52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.