PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of forest stand dynamics in the Timekssaouine forest (Northern Morocco) using statistical and machine learning approaches

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tracking changes in forest composition, structure, and distribution over time is essential for developing effective conservation strategies and sustainable management practices in these ecologically sensitive regions. In this study, the objective was to conduct a diachronic analysis, comparing land cover and vegetation status in the Timekssaouine forest within the Central Plateau region of Morocco over a 20-year period. The aim was to analyze the spatiotemporal evolution of plant formations. Satellite imagery, specifically Landsat images taken during the summer period (July) of 1999 and 2020, was utilized to provide a detailed observation of changes over time and space. Additionally, machine learning modeling using random forest (RF) was implemented to further explore the dynamics of change in the forest. The RF models developed achieved reasonable to good predictive performance, with AUC scores of between 0.67 and 0.80. The obtained findings revealed a concerning regression, with both the diachronic (59% of the forest area) and RF (35%) approaches highlighting extensive regression of the forest, particularly in the cork oak formations at 9%, with notable de-densification across density classes between 1999 and 2020, a diachronic study. Dense cork oak and moderately dense strata were particularly affected, experiencing regressions of 455 ha and 1204 ha, respectively, during this period. Conversely, open and sparse strata expanded, primarily sourced from the dense and moderately dense strata, resulting in an overall regression rate of 60 ha/year. The dense cork oak strata were prevalent on steep slopes with deep, slightly acidic soil, while scattered and clear strata were observed in low-lying areas with shallow soils and a pH range from neutral to slightly basic. Autumn precipitation and amplified overgrazing intensity emerged as the pivotal factors influencing the categorization of forest formations in the study forest, impacting tree density levels and posing a significant threat to forest regeneration.
Twórcy
  • Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Morocco
  • Botany Team and Valorization of Plant and Fungal Resources (BOVAREF), Research Centre Biotechnology Vegetal and Microbial, Biodiversity and Environment, Faculty of Science, Mohammed V University in Rabat, Morocco
  • Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Morocco
autor
  • Laboratoire des Productions Végétale, Animales et Agro-industrie, Equipe de Botanique, Biotechnologie et Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
  • Botany Team and Valorization of Plant and Fungal Resources (BOVAREF), Research Centre Biotechnology Vegetal and Microbial, Biodiversity and Environment, Faculty of Science, Mohammed V University in Rabat, Morocco
autor
  • Geology and Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
autor
  • Laboratory of Lands Equilibrium and and Territories Planning, Faculty of Literature and Human Sciences, Physical Geography Team, Mohammed V University Rabat, Morocco
  • Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Morocco
Bibliografia
  • 1. Alaoui, A., Laaribya, S., & Sezgin, A. Y. A. N. (2020). The evolution of the forest cover with the effect of anthropic pressure (The Case Study of Sehoul Cork- Oak Forest in Morocco, North Atlantic). Kastamonu University Journal of Forestry Faculty, 20(1), 62–73.
  • 2. Almeida, A. M., Martins, M. J., Campagnolo, M. L., Fernandez, P., Albuquerque, T., Gerassis, S., Gonçalves, J. C., & Ribeiro, M. M. (2022). Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-021-03996-0
  • 3. Armaş, I., Osaci-Costache, G., & Braşoveanu, L. (2014). Forest landscape history using diachronic cartography and GIS. Case study: Subcarpathian Prahova Valley, Romania. In Planning and designing sustainable and resilient landscapes, 73–86.
  • 4. Aronson, J., Pereira, J. S., & Pausas, J. G. (Eds.). (2012). Cork oak woodlands on the edge: Ecology, adaptive management, and restoration. Island Press.
  • 5. Aziz, G., Minallah, N., Saeed, A., Frnda, J., & Khan, W. (2024). Remote sensing-based forest cover classification using machine learning. Scientific Reports, 14(1), 1–17. https://doi.org/10.1038/ s41598-023-50863-1
  • 6. Bagaram, B. M. (2016). Site suitability analysis for cork oak regeneration using GIS-based multicriteria evaluation techniques in Maamora Forest-Morocco. Open Access Library Journal, 3(3), 1.
  • 7. Bagella, S., Salis, L., Marrosu, G. M., Rossetti, I., Fanni, S., Caria, M. C., & Roggero, P. P. (2013). Effects of long-term management practices on grassland plant assemblages in Mediterranean cork oak silvo-pastoral systems. Plant Ecology, 214, 621–631.
  • 8. Bakkali, M., Qarro, M., Diouri, M., Barbero, M., & Bourbouze, A. (2000). Above-ground biomass of Argyrocytisus battandieri Maire in the Middle Atlas mountains of Morocco. Fourrages, (162), 169–179.
  • 9. Barbache, A., Beghami, Y., & Benmessaoud, H. (2018). Study and diachronic analysis of forest cover changes of Belezma-Algeria. Geographica Pannonica, 22(4).
  • 10. Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D.,... & Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79.
  • 11. Benabid, A. (2019). Forest degradation in Morocco. In The North African environment at risk 175–190. Routledge.
  • 12. Benhssaine, K., Aabdousse, J., Bouchti, N. E., Nechchadi, H., Ettaqy, A., Ramchoun, M., Abbas, Y., & Berrougui, H. (2024). Anthropogenic activities and climate variability impacts on Juniperus thurifera forest of El Houanet, Morocco. Ecological Engineering & Environmental Technology, 25(3), 70–94. https://doi.org/10.12912/27197050/178278
  • 13. Benzyane, M. (1996). Improvement strategy of forest tree species in Morocco: The case of cork oak. Quercus sub r Network, 60.
  • 14. Bicho, M. C., Correia, A. C., Rodrigues, A. R., Soares David, J., & Costa-e-Silva, F. (2022). Climate and management effects on the herbaceous layer productivity of a cork oak woodland. Agroforestry Systems, 96(2), 315–327.
  • 15. Boujraf, A., Dallahi, Y., Malki, F., Dahmani, J., & Douira, A. (2021). Impact assessment of plant communities and ecological parameters on cork growth in Mamora Forest, Morocco. Plant Cell Biotechnology and Molecular Biology, 35–42.
  • 16. Brandt, J. S., & Buckley, R. C. (2018). A global systematic review of empirical evidence of ecotourism impacts on forests in biodiversity hotspots. Current Opinion in Environmental Sustainability, 32, 112–118.
  • 17. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • 18. Busing, R. T. (1991). A spatial model of forest dynamics. Vegetatio, 92, 167–179.
  • 19. Busing, R. T., & Mailly, D. (2004). Advances in spatial, individual‐based modelling of forest dynamics. Journal of Vegetation Science, 15(6), 831–842.
  • 20. Cerqueira, V., Torgo, L., & Soares, C. (2022). A case study comparing machine learning with statistical methods for time series forecasting: Size matters. Journal of Intelligent Information Systems, 59(2), 415–433. https://doi.org/10.1007/ s10844-022-00713-9
  • 21. Chafik, H., Alaoui, S. B., & Berrada, M. (2023). Assessing the dynamics of a South Mediterranean dryland-type forest kind by logistic regression and cellular automata. In Advances in Science, Technology & Innovation, 203–205. https://doi.org/10.1007/978-3-031-43169-2_42
  • 22. Chen, Q., Laurin, G. V., & Valentini, R. (2015). Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sensing of Environment, 160, 134–143.
  • 23. Da Ponte, E., Mack, B., Wohlfart, C., Rodas, O., Fleckenstein, M., Oppelt, N., & Kuenzer, C. (2017). Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. Forests, 8(10), 389.
  • 24. Dallahi, Y., Boujraf, A., Meliho, M., & Orlando, C. A. (2023). Assessment of forest dieback on the Moroccan Central Plateau using spectral vegetation indices. Journal of Forestry Research, 34(3), 793–808.
  • 25. Dallahi, Y., Chahhou, D., El Aboudi, A., Aafi, A., Abbas, Y., Mounir, F., & Abidine, M. M. O. (2017). The dynamics of natural regeneration of Tetraclinis articulata (Vahl) Masters in the Moroccan Central Plateau. Plant Sociology, 54(2), 37–41.
  • 26. de Mahieu, A., Ponette, Q., Mounir, F., & Lambot, S. (2020). Using GPR to analyze regeneration success of cork oaks in the Maâmora forest (Morocco). NDT & E International, 115, 102297.
  • 27. Di Rita, F., Fletcher, W. J., Aranbarri, J., Margaritelli, G., Lirer, F., & Magri, D. (2018). Holocene forest dynamics in central and western Mediterranean: Periodicity, spatio-temporal patterns, and climate influence. Scientific Reports, 8(1), 8929.
  • 28. Dudley, N., Jeanrenaud, J. P., & Sullivan, F. (2014). Bad harvest: The timber trade and the degradation of global forests. Routledge.
  • 29. El-Bouhali, A., Amyay, M., & Ech-Chahdi, K. E. O. (2024). Combined impact of drought and land use changes on water resources in the Tabular Middle Atlas, Morocco. Revista De Estudios Andaluces, 48, 202–220. https://doi.org/10.12795/rea.2024.i48.10
  • 30. Erbaugh, J. T., Pradhan, N., Adams, J., Oldekop, J. A., Agrawal, A., Brockington, D., & Chhatre, A. (2020). Global forest restoration and the importance of prioritizing local communities. Nature Ecology & Evolution, 4(11), 1472–1476.
  • 31. Erfanifard, Y., Lotfi Nasirabad, M., & Stereńczak, K. (2022). Assessment of Iran’s mangrove forest dynamics (1990–2020) using Landsat time series. Remote Sensing, 14(19), 4912.
  • 32. Ezzine, H., Metougui, M. L., Boukcim, H., & Abbas, Y. (2023). Physiological responses of three field-grown species (Ceratonia siliqua, Eucalyptus camaldulensis, and Moringa oleifera) to water deficits in a Mediterranean semi-arid climate. Scientific Reports, 13(1). https://doi.org/10.1038/ s41598-023-31664-y
  • 33. Food and Agriculture Organization of the United Nations (FAO). (2022). In brief to The State of the World’s Forests 2022: Forest pathways for green recovery and building inclusive, resilient, and sustainable economies.
  • 34. Forrester, D. I. (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management, 312, 282–292.
  • 35. Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A., & Cescatti, A. (2022). Emerging signals of declining forest resilience under climate change. Nature, 608(7923), 534–539. https://doi.org/10.1038/ s41586-022-04959-9
  • 36. Gao, Y., Skutsch, M., Paneque-Gálvez, J., & Ghilardi, A. (2020). Remote sensing of forest degradation: A review. Environmental Research Letters, 15(10), 103001.
  • 37. Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J., & King, L. A. (2015). Conceptualizing forest degradation. Trends in Ecology & Evolution, 30(10), 622–632.
  • 38. Gratzer, G., Canham, C., Dieckmann, U., Fischer, A., Iwasa, Y., Law, R., & Szwagrzyk, J. (2004). Spatio‐temporal development of forests–Current trends in field methods and models. Oikos, 107(1), 3–15.
  • 39. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR), 51(5), 1-42.
  • 40. Hammouyat, A., Ichen, A., Elmalki, M., & Chahhou, D. (2022). The degradation of forest areas in Morocco: Case of Benslimane province. Biosystems Diversity, 30(4), 388-396.
  • 41. Huang, C., Zhou, Z., Wang, D., & Dian, Y. (2016). Monitoring forest dynamics with multi-scale and time series imagery. Environmental Monitoring and Assessment, 188, 1–15.
  • 42. Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518.
  • 43. Ikraoun, H., El Mderssa, M., El Mouridi, Z., Nassiri, L., & Ibijbijen, J. (2022). Carbon stock assessment and analysis of physiochemical characteristics under seven woody forest formations in Oulmes Central Plateau, Morocco. Soil & Environment, 41(1).
  • 44. Jhariya, M. K., Banerjee, A., Meena, R. S., & Yadav, D. K. (Eds.). (2019). Sustainable agriculture, forest, and environmental management. Springer.
  • 45. Laarbiya, S. (2023). A review analysis of the degradation of cork oak forests in North Atlantic, Morocco. Journal of Biometry Studies, 3(2), 54–59.
  • 46. Laaribya, S., Alaoui, A., Ayan, S., Benabou, A., Labbaci, A., Ouhaddou, H., & Bijou, M. (2021). Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. Forestist, 71(2), 63–69.
  • 47. Laaribya, S., Alaoui, A., & Gmira, N. (2014). Contribution à l’évaluation de la pression pastorale dans la forêt de la Maamora: Parcours forestiers et surpâturage. Revue Nature & Technologie des Sciences de l’Environnement, 10, 39–50.
  • 48. Lahssini, S., Lahlaoi, H., Alaoui, H., Hlal, E., Bagaram, M., & Ponette, Q. (2015). Predicting cork oak suitability in Maâmora Forest using Random Forest algorithm. Journal of Geographic Information System, 7, 202–210. https://doi.org/10.4236/ jgis.2015.72017
  • 49. Laouina, A., Aderghal, M., Al Karkouri, J., Antari, M., Chaker, M., Laghazi, Y., & Sfa, M. (2010). The efforts for cork oak forest management and their effects on soil conservation, the Shoul Plateau, Rabat region, Morocco. Forest Systems, 19(2), 263–277.
  • 50. Lausch, A., Erasmi, S., King, D. J., Magdon, P., & Heurich, M. (2016). Understanding forest health with remote sensing—Part I: A review of spectral traits, processes, and remote-sensing characteristics. Remote Sensing, 8(12), 1029.
  • 51. Le Polain de Waroux, Y., & Lambin, E. F. (2012). Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Applied Geography, 32(2), 777–786. https://doi.org/10.1016/j.apgeog.2011.08.005
  • 52. Lescuyer, G. (2013). Sustainable forest management at the local scale: A comparative analysis of community forests and domestic forests in Cameroon. Small-Scale Forestry, 12(1), 51–66.
  • 53. Linares, J. C., Taïqui, L., Sangüesa-Barreda, G., Seco, J. I., & Camarero, J. J. (2012). Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia, 31(2), 88–96. https://doi.org/10.1016/j. dendro.2012.08.003
  • 54. Malki, F., Al Karkouri, J., Sabir, M., El Mderssa, M., & Dallahi, Y. (2022). Contribution of geomatics tools to the study of the spatio-temporal evolution of forest stands of the Maamora forest in the face of global changes. E3S Web of Conferences, 337, 01001. https://doi.org/xxxx
  • 55. Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P.,... & Wagner, W. (2017). Uncertainty information in climate data records from Earth observation. Earth System Science Data, 9(2), 511-527.
  • 56. Mitchell, A. L., Rosenqvist, A., & Mora, B. (2017). Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon balance and management, 12, 1-22.
  • 57. Mushagalusa, C. A., Fandohan, A. B., & Kakaï, R. G. (2024). Predicting species abundance using machine learning approach: A comparative assessment of random forest spatial variants and performance metrics. Modeling Earth Systems and Environment, 10(4), 5145–5171. https://doi.org/10.1007/s40808-024-02055-7
  • 58. Mysterud, A. (2006). The concept of overgrazing and its role in management of large herbivores. Wildlife Biology, 12(2), 129–141.
  • 59. Noumonvi, K. D., Mounir, F., & Belghazi, B. (2017). Spatial multi-criteria based analysis to assess dynamics and vulnerability of forest ecosystems to global changes: Case of Maamora Forest- Morocco. Open Access Library Journal, 4(9), 1–16.
  • 60. Pausas, J. G., & Millán, M. M. (2019). Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience, 69(2), 143–151. https://doi.org/10.1093/biosci/biy157
  • 61. Pelletier, J., & Goetz, S. J. (2015). Baseline data on forest loss and associated uncertainty: advances in national forest monitoring. Environmental Research Letters, 10(2), 021001.
  • 62. Phan, A., Takejima, K., Hirakawa, T., & Fukui, H. (2022). Forest-related SDG issues monitoring for data-scarce regions employing machine learning and remote sensing: A case study for Ena City, Japan. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 4343–4346.
  • 63. Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240.
  • 64. Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine learning classification of Mediterranean forest habitats in Google Earth Engine based on seasonal Sentinel-2 time-series and input image composition optimisation. Remote Sensing, 13(4), 586. https://doi.org/10.3390/rs13040586
  • 65. Radke, N., Keller, K., Yousefpour, R., & Hanewinkel, M. (2020). Identifying decision-relevant uncertainties for dynamic adaptive forest management under climate change. Climatic change, 163(2), 891–911.
  • 66. Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation and Research, 6(2), 3825. https://doi.org/10.24294/nrcr.v6i2.3825
  • 67. Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31–39.
  • 68. Ritchie, H., & Roser, M. (2021). Forests and deforestation. Our World in Data.
  • 69. Roces-Díaz, J. V., Vayreda, J., De Cáceres, M., García-Valdés, R., Banqué-Casanovas, M., Morán- Ordóñez, A., Brotons, L., De-Miguel, S., & Martínez-Vilalta, J. (2021). Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. Forest Ecology and Management, 480, 118623. https://doi.org/10.1016/j. foreco.2020.118623
  • 70. Rossetti, I., Bagella, S., Cappai, C., Caria, M. C., Lai, R., Roggero, P. P.,... & Seddaiu, G. (2015). Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agriculture, Ecosystems & Environment, 202, 203–216.
  • 71. Saddik, A., Hssaisoune, M., Belaqziz, S., Labbaci, A., Tairi, A., Meskour, B., & Bouchaou, L. (2024). Assessing the health and yield of argan trees in Morocco’s unique ecosystem: A multispectral and machine learning approach. International Journal of Remote Sensing, 1–29. https://doi.org/10.1080/0 1431161.2024.2407560
  • 72. Salvati, L., & Tombolini, I. (2014). A diachronic classification of peri-urban forest land based on vulnerability to desertification
  • 73. San Roman Sanz, A., Fernandez, C., Mouillot, F., Ferrat, L., Istria, D., & Pasqualini, V. (2013). Long-term forest dynamics and land-use abandonment in the Mediterranean mountains, Corsica, France. Ecology and Society, 18(2).
  • 74. Seiler, C., Hutjes, R. W. A., Kruijt, B., Quispe, J., Añez, S., Arora, V. K.,... & Kabat, P. (2014). Modeling forest dynamics along climate gradients in Bolivia. Journal of Geophysical Research: Biogeosciences, 119(5), 758–775.
  • 75. Senthilkumar, N., Gilfether, M., Chang, H. H., Russell, A. G., & Mulholland, J. (2022). Using land use variable information and a random forest approach to correct spatial mean bias in fused CMAQ fields for particulate and gas species. Atmospheric Environment, 274, 118982.
  • 76. Sekulić, A., Kilibarda, M., Heuvelink, G. B., Nikolić, M., & Bajat, B. (2020). Random forest spatial interpolation. Remote Sensing, 12(10), 1687.
  • 77. Serbouti, S., Ettaqy, A., Boukcim, H., Mderssa, M., Ghachtouli, N. E., & Abbas, Y. (2023). Forests and woodlands in Morocco: Review of historical evolution, services, priorities for conservation measures and future research. The International Forestry Review, 25(1), 121–145. https://doi.org/10.1505/146554823836838745
  • 78. Serrasolses, I., Pérez-Devesa, M., Vilagrosa, A., Pausas, J. G., Sauras, T., Cortina, J.,... & Vallejo, R. (2009). Soil properties constraining cork oak distribution.
  • 79. Solano, F., Praticò, S., Modica, G., Quilghini, G., Piovesan, G. (2023). Multi-Temporal Satellite Imagery for Monitoring Productivity Trend in Mediterranean Coastal Forest Ecosystems: The Study Case of the State Natural Reserve “Duna Feniglia” (Italy). In: Ferro, V., Giordano, G., Orlando, S., Vallone, M., Cascone, G., Porto, S.M.C. (eds) AIIA 2022: Biosystems Engineering Towards the Green Deal. AIIA 2022. Lecture Notes in Civil Engineering, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-031-30329-6_126
  • 80. Suárez-Muñoz, M., Bonet-García, F. J., Navarro- Cerrillo, R., Herrero, J., & Mina, M. (2023). Forest management scenarios drive future dynamics of Mediterranean planted pine forests under climate change. Landscape Ecology, 38(8), 2069–2084. https://doi.org/10.1007/s10980-023-01678-y
  • 81. Taleb, M. S., & Fennane, M. (2019). Vascular plant communities of Morocco. Springer International Publishing.
  • 82. Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S., Rödig, E.,... & Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature, 554(7693), 519–522.
  • 83. Tepe, E. (2024). A random forests-based hedonic price model accounting for spatial autocorrelation. Journal of Geographical Systems, 1–30.
  • 84. Vennetier, M., Vila, B., Liang, E. Y., Guibal, F., Ripert, C., & Chandioux, O. (2005). Impact du changement climatique sur la productivité forestière et le déplacement d’une limite bioclimatique en région méditerranéenne française. Ingénieries, 44, 49–61.
  • 85. Zerouali, B., Santos, C. A. G., Nascimento, T. V. M. D., & Da Silva, R. M. (2023). A cloud-integrated GIS for forest cover loss and land use change monitoring using statistical methods and geospatial technology over northern Algeria. Journal of Environmental Management, 341, 118029. https://doi.org/10.1016/j.jenvman.2023.118029
  • 86. Zhao, J., Wang, J., & Anderson, N. (2024). Machine learning applications in forest and biomass supply chain management: A review. International Journal of Forest Engineering, 1–10. https://doi.org/10.108 0/14942119.2024.2380230
  • 87. Zhao, Q., Yu, S., Zhao, F., Tian, L., & Zhao, Z. (2018). Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. Forest Ecology and Management, 434, 224–234. https://doi.org/10.1016/j.foreco.2018.12
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9d98204-11f1-45a8-a84e-80a9c397f7ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.