PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Two Biosorbent Beads for Methylene Blue Discoloration in Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, alginate-encapsulated biosorbents have been prepared from agricultural wastes viz. peanut shells and rice husks. Biosorbents in this study were referred as En-PS and En-RH for the adsorbents prepared from peanut shells and rice husks, respectively. The characteristics of the adsorbents were thoroughly investigated using scanning electron microscope, X-ray diffractometer, surface area analyzer, and Fourier-transform infrared spectrophotometer instruments. The prepared biosorbents were used as adsorbents for cationic methylene blue (MB) dye in water. The encapsulation process using sodium alginate simplified the separation of adsorbent from the water after the adsorption process. The adsorptions of MB onto both adsorbents followed the pseudo-second order model and fitted both Langmuir and Freundlich isotherm models. Thermodynamic studies revealed that the adsorption of MB onto En-PS and En-RH was a spontaneous and endothermic process with the ΔG° reaction of -1.694 and -2.028 kJ/mol at the room temperature, respectively. Biosorbents could be used in the adsorption-desorption process for up to 3 cycles.
Rocznik
Strony
137--145
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km. 14.5, Yogyakarta 55584, Indonesia
autor
  • Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Jl. Kaliurang Km. 14.5, Yogyakarta 55584, Indonesia
Bibliografia
  • 1. Abdel-Aziz, M.H., Bassyouni, M., Zoromba, M.S., Alshehri, A.A. 2018. Removal of dyes from waste solutions by anodic oxidation on an array of horizontal graphite rods anodes. Ind. Eng. Chem. Res., 58(2), 1004–1018. https://doi.org/10.1021/acs.iecr.8b05291
  • 2. Adelodun, B., Ajibade, F., Abdulkadir, T., Bakare, H., Choi, K. 2020. SWOT analysis of agrowaste based adsorbents for persistent dye pollutants removal from wastewaters. Environ. Degrad. Causes Remediat. Strateg., 88–103. https://doi.org/10.26832/aesa-2020-edcrs-07
  • 3. Alotaibi, N.F., Nassar, A.M., Alrwaili, G.M., Elnasr, T.A.S., Abo Zeid E.F. 2019. Selective, efficient and complete precipitation of anionic dyes in aqueous solutions using Ag@ PbCO3 nanocomposite. Inorg. Nano-Metal Chem., 49, 395–400. https://doi.org/10.1080/24701556.2019.1661463
  • 4. Al-Kadhi, N.S. 2019. The kinetic and thermodynamic study of the adsorption Lissamine Green B dye by micro-particle of wild plants from aqueous solution. Egypt. J. Aquat. Res., 45, 231–238. https://doi.org/10.1016/j.ejar.2019.05.004
  • 5. Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.-G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf., 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
  • 6. Banerjee, S., Chattopadhyaya, M.C., Uma, Sharma, Y.C. 2014. Adsorption Characteristics of Modified Wheat Husk for the Removal of a Toxic Dye, Methylene Blue, from Aqueous Solutions. J. Hazard. Toxic Radioact. Waste, 18, 56–63. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000191
  • 7. Costa, T.C., Hendges, L.T., Temochko, B., Mazur, L.P., Marinho, B.A., Weschenfelder, S.E., Florido, P.L., Silva, A., Souza, A.A.U., Souza, M.A.G.U. 2022. Evaluation of the technical and environmental feasibility of adsorption process to remove water soluble organics from produced water: A review. J. Pet. Sci. Eng., 208, 109360. https://doi.org/10.1016/j.petrol.2021.109360
  • 8. Garg, D., Majumder, C.B., Kumar, S., Sarkar, B. 2019. Removal of Direct Blue-86 dye from aqueous solution using alginate encapsulated activated carbon (PnsAC-alginate) prepared from waste peanut shell. J. Environ. Chem. Eng., 7, 103365. https://doi.org/10.1016/j.jece.2019.103365
  • 9. Gökırmak Söğüt, E. 2022. Effect of chemical and thermal treatment priority on physicochemical properties and removal of crystal violet dye from aqueous solution. ChemistrySelect, 7, e202200262. https://doi.org/10.1002/slct.202200262
  • 10. Kali, A., Amar, A., Loulidi, I., Jabri, M., Hadey, C., Lgaz, H., Alrashdi, A.A., Boukhlifi, F. 2022. Characterization and adsorption capacity of four low-cost adsorbents based on coconut, almond, walnut, and peanut shells for copper removal. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-022-02564-4
  • 11. Khan, A.A., Gul, J., Naqvi, S.R., Ali, I., Farooq, W., Liaqat, R., AlMohamadi, H., Štêpanec, L., Juchelková, D. 2022. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere, 306, 135565. https://doi.org/10.1016/j.chemosphere.2022.135565
  • 12. Khaniabadi, Y.O., Mohammadi, M.J., Shegerd, M., Sadeghi, S., Saeedi, S., Basiri, H. 2017. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell. Environ. Health Eng. Manag., 4(1), 29–35. https://doi.org/10.15171/EHEM.2017.05
  • 13. Khatami, S., Deng, Y., Tien, M., Hatcher, P.G. 2019. Lignin contribution to aliphatic constituents of humic acids through fungal degradation. J. Environ. Qual., 48, 1565–1570. https://doi.org/10.2134/jeq2019.01.0034
  • 14. Khiaophong, W., Jaroensan, J., Kachangoon, R., Vichapong, J., Burakham, R., Santaladchaiyakit, Y., Srijaranai, S. 2022. Modified peanut shell as an eco-friendly biosorbent for effective extraction of triazole fungicide residues in surface water and honey samples before their determination by high-performance liquid chromatography. ACS Omega., 7(39), 34877–34887. https://doi.org/10.1021/acsomega.2c03410
  • 15. Lucaci, A.R., Bulgariu, D., Ahmad, I., Bulgariu, L. 2020. Equilibrium and kinetics studies of metal ions biosorption on alginate extracted from marine red algae biomass (Callithamnion corymbosum sp.). Polymers, 12(9), 1888. https://doi.org/10.3390/polym12091888
  • 16. Marszałek, J., Żyłła, R. 2021. Recovery of water from textile dyeing using membrane filtration processes. Processes, 9(10), 1833. https://doi.org/10.3390/pr9101833
  • 17. Orooji, Y., Han, N., Nezafat, Z., Shafiei, N., Shen, Z., Nasrollahzadeh, M., Karimi-Maleh, H., Luque, R., Bokhari, A., Klemeš, J.J. 2022. Valorisation of nuts biowaste: Prospects in sustainable bio (nano) catalysts and environmental applications. J. Clean Prod., 347, 131220. https://doi.org/10.1016/j.jclepro.2022.131220
  • 18. Pavan, F.A., Lima, E.C., Dias, S.L., Mazzocato, A.C. 2008. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J. Hazard. Mater., 150, 703–712. https://doi.org/10.1016/j.jhazmat.2007.05.023
  • 19. Peng, H., Guo, J. 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ. Chem. Lett., 18, 2055–2068. https://doi.org/10.1007/s10311-020-01058-x
  • 20. Rashid, R., Shafiq, I., Akhter, P., Iqbal, M.J., Hussain, M. 2021. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res., 28, 9050–9066. https://doi.org/10.1007/s11356-021-12395-x
  • 21. Saghir, S., Pu, C., Fu, E., Wang, Y., Xiao, Z. 2022. Synthesis of high surface area porous biochar obtained from pistachio shells for the efficient adsorption of organic dyes from polluted water. Surfaces and Interfaces, 34, 102357. https://doi.org/10.1016/j.surfin.2022.102357
  • 22. Sah, M.K., Edbey, K., EL-Hashani, A., Almshety, S., Mauro, L., Alomar, T.S., AlMasoud, N., Bhattarai, A. 2022. Exploring the biosorption of methylene blue dye onto agricultural products: A critical review. Separations, 9(9), 256. https://doi.org/10.3390/separations9090256
  • 23. Sahmoune, M.N. 2019. Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ. Chem. Lett., 17, 697–704. https://doi.org/10.1007/s10311-018-00819-z
  • 24. Sarojini, G., Babu, S.V., Rajamohan, N., Rajasimman, M. 2022. Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environ. Res., 204, 112132. https://doi.org/10.1016/j.envres.2021.112132
  • 25. Sawalha, H., Bader, A., Sarsour, J., Al-Jabari, M., Rene, E.R. 2022. Removal of dye (methylene blue) from wastewater using bio-char derived from agricultural residues in Palestine: Performance and isotherm analysis. Processes, 10(10), 2039. https://doi.org/10.3390/pr10102039
  • 26. Senthil Kumar, P., Abhinaya, R.V., Gayathri Lashmi, K., Arthi. V., Pavithra, R., Sathyaselvabala, V., Dinesh Kirupha, S., Sivanesan, S. 2011. Adsorption of methulene blue dye from aqueous solution by agricultural waste: Equilibrium, thermodynamics, kinetics, mechanism and process design. Colloid J., 73, 651–661. https://doi.org/10.1134/S1061933X11050061
  • 27. Teshager, F.M., Habtu, N.G., Mequanint, K. 2022. A systematic study of cellulose-reactive anionic dye removal using a sustainable bioadsorbent. Chemosphere, 303, 135024. https://doi.org/10.1016/j.chemosphere.2022.135024
  • 28. Turan, A.Z., Turan, M. 2022. Removal of heavy metals and dyes from wastewaters by raw and activated carbon hazelnut shells. In: Progress in Nanoscale and Low-Dimensional Materials and Devices. Springer Topics in Applied Physics. Springer, Cham., 144, 907–933. https://doi.org/10.1007/978-3-030-93460-6_31
  • 29. Uddin, M.K., Nasar, A. 2020. Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci. Rep., 10, 1–13. https://doi.org/10.1038/s41598-020-64745-3
  • 30. Vishnu, D., Dhandapani, B., Authilingam, S., Sivakumar, S.V. 2022. A comprehensive review of effective adsorbents used for the removal of dyes from wastewater. Curr. Anal. Chem., 18, 255–268. https://doi.org/10.2174/1573411016999200831111155
  • 31. Yu, H., Wang, T., Yu, L., Dai, W., Ma, N., Hu, X., Wang, Y. 2016. Remarkable adsorption capacity of Ni-doped magnolia-leaf-derived bioadsorbent for congo red. J. Taiwan Inst. Chem. Eng., 64, 279–284. https://doi.org/10.1016/j.jtice.2016.04.008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9d448ce-b688-410e-b67a-b56bf7212bd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.