PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cardiac arrhythmia classification using the phase space sorted by Poincare sections

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many methods for automatic heartbeat classification have been applied and reported in literature, but methods, which used the basin geometry of quasi-periodic oscillations of electrocardiogram (ECG) signal in the phase space for classifying cardiac arrhythmias, frequently extracted a limited amount of information of this geometry. Therefore, in this study, we proposed a novel technique based on Poincare section to quantify the basin of quasi-periodic oscillations, which can fill the mentioned gap to some extent. For this purpose, we first reconstructed the two-dimensional phase space of ECG signal. Then, we sorted this space using the Poincare sections in different angles. Finally, we evaluated the geometric features extracted from the sorted spaces of five heartbeat groups recommend by the association for the advancement of medical instrumentation (AAMI) by using the sequential forward selection (SFS) algorithm. The results of this algorithm indicated that a combination of nine features extracted from the sorted phase space along with per and post instantaneous heart rate could significantly separate the five heartbeat groups (99.23% and 96.07% for training and testing sets, respectively). Comparing these results with the results of earlier work also indicated that our proposed method had a figure of merit (FOM) about 32.12%. Therefore, this new technique not only can quantify the basin geometry of quasi-periodic oscillations of ECG signal in the phase space, but also its output can improve the performance of detection systems developed for the cardiac arrhythmias, especially in the five heartbeat groups recommend by the AAMI.
Twórcy
  • Faculty of New Sciences & Technology, Semnan University, Semnan, Iran
autor
  • Department of Electrical Engineering, Semnan University, Semnan, Iran
Bibliografia
  • [1] Foo SY, Stuart G, Harvey B, Meyer-Baesea A. Neural network-based EKG pattern recognition. Eng Appl Artif Intell 2002;15(3):253–60.
  • [2] Ozbay Y, Ceylan R, Karlik B. A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput Biol Med 2006;36(4):376–88.
  • [3] Übeyli E. Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Syst Appl 2010;37(2):1192–9.
  • [4] Ravi NS, Thomas P. An improved method to detect common cardiac disorders from ECG signals using artificial neural network and fuzzy logic. IJRECE 2016;4(3):24–8.
  • [5] Park J, Kang M, Gao J, Kim Y, Kang K. Cascade classification with adaptive feature extraction for arrhythmia detection. J Med Syst 2017;41(1):11.
  • [6] Raghavendra BS, Bera D, Bopardikar AS, Narayanan R. Cardiac arrhythmia detection using dynamic time warping of ECG beats in e-healthcare systems. 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks; 2011.
  • [7] Das MK, Ari S. Patient-specific ECG beat classification technique. Healthc Technol Lett 2014;1(3):98–103.
  • [8] Jiang W, Kong SG. Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 2007;18(6):1750–61.
  • [9] Lin C. Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Comput Math Appl 2008;55(4):680–90.
  • [10] Avina-Cervantes JG, Torres-Cisneros M, Saavedra-Martinez JE, Pinales J. Frequency, time-frequency and wavelet analysis of ECG signal. 2006 Multiconference on Electronics and Photonics; 2006.
  • [11] Chouvarda I, Maglaveras N, Boufidou A, Mohlas S, Louridas G. Wigner-Ville analysis and classification of electrocardiograms during thrombolysis. Med Biol Eng Comput 2003;41(6):609–17.
  • [12] Khorrami H, Moavenian M. A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Syst Appl 2010;37(8):5751–7.
  • [13] Martis RJ, Acharya UR, Adeli H, Prasad H, Tan JH, Chua KC, et al. Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation. Biomed Signal Process Control 2014;13:295–305.
  • [14] Inan OT, Giovangrandi L, Kovacs GTA. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Trans Biomed Eng 2006;53(12):2507–15.
  • [15] Gutiérrez-Gnecchi JA, Morfin-Magaña R, Lorias-Espinoza D, Tellez-Anguiano AC, Reyes-Archundia E, Méndez-Patiño A, et al. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed Signal Process Control 2017;32:44–56.
  • [16] Sahoo S, Kanungo B, Behera S, Sabut S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017;108:55–66.
  • [17] Sayadi O, Shamsollahi MB, Clifford GD. Robust detection of premature ventricular contractions using a wave-based bayesian framework. IEEE Trans Biomed Eng 2009;57 (2):353–62.
  • [18] Acharya UA, Fujita H, Adama M, Lih OS, Sudarshan VK, Hong TJ, et al. Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study. Inf Sci 2017;377:17–29.
  • [19] Ince T, Kiranyaz S, Gabbouj M. A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 2009;56(5):1415–26.
  • [20] Martis RJ, Acharya UR, Mandana KM, Ray AK, Chakraborty C. Cardiac decision making using higher order spectra. Biomed Signal Process Control 2013;8(2):193–203.
  • [21] Martis RJ, Acharya UR, Choo CM, Mandana KM, Ray AK, Chakraborty C. Application of higher order cumulant features for cardiac health diagnosis using ECG signals. Int J Neural Syst 2013;23(04):1350014.
  • [22] Kutlu Y, Kuntalp D. Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput Methods Progr Biomed 2012;105(3):257–67.
  • [23] Prasad H, Martis RJ, Acharya UR, Min LC, Suri JS. Application of higher order spectra for accurate delineation of atrial arrhythmia. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2013.
  • [24] Park KS, Cho BH, Lee DH, Song SH, Lee JS, Chee YJ, et al. Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function. 2008 Computers in Cardiology; 2008.
  • [25] Ge D, Srinivasan N, Krishnan SM. Cardiac arrhythmia classification using autoregressive modeling. BioMed Eng Online 2002;1:5.
  • [26] Martis RJ, Achary UR, Mandana KM, Ray AK, Chakraborty C. Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl 2012;39(14):11792–800.
  • [27] Martis RJ, Acharya UR, Min LC. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control 2013;8(5):437–48.
  • [28] Martis RJ, Acharya UR, Lim CM, Suri JS. Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. Knowl Based Syst 2013;45:76–82.
  • [29] Llamedo M, Martinez JP. Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans Biomed Eng 2010;58(3):616–25.
  • [30] Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput Methods Progr Biomed 2016;127:52–63.
  • [31] Chazal PD, Dwyer MO, Reilly RB. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 2004;51(7):1196–206.
  • [32] Chazal PD, Reilly RB. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 2006;53(12):2535–43.
  • [33] Castill O, Melin P, Ramírez E, Soria J. Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst Appl 2012;39(3):2947–55.
  • [34] Acharya UR, Fujit H, Lih OS, Hagiwara Y, Tan JH, Adam M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 2017;405:81–90.
  • [35] Herry CL, Frasch M, Seely AJE, Wu H. Heart beat classification from single-lead ECG using the synchrosqueezing transform. Physiol Meas 2017;38(2):171.
  • [36] Acharya R, Bhat PS, Kannathal N, Rao A, Lim CM. Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM 2005;26(2):133–9.
  • [37] Acharya UR, Fujita H, Sudarshan VK, Oh LS, Adam M, Koh JEW, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl Syst 2016;99:146–56.
  • [38] Hoshi RA, Pastre CM, Vanderlei LCM, Godoy MF. Poincare plot indexes of heart rate variability: relationships with other nonlinear variables. Auton Neurosci 2013;177(2):271–4.
  • [39] Owis MI, Abou-Zied AH, Youssef ABM, Kadah YM. Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans Biomed Eng 2002;49(7):733–6.
  • [40] Mishra AK, Raghav S. Local fractal dimension based ECG arrhythmia classification. Biomed Signal Process Control 2010;5(2):114–23.
  • [41] Acharya RU, Lim CM, Joseph P. Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. ITBM-RBM 2002;23(6):333–9.
  • [42] Chan HL, Fang SC, Chao PK, Wang CL, Wei JD. Phase-space reconstruction of electrocardiogram for heartbeat classification. World Congress on Medical Physics and Biomedical Engineering. Springer Berlin Heidelberg; 2010. p. 1234–7.
  • [43] Chan HL, Wang CL, Fang SC, Chao PK, Wei JD. Recognition of ventricular extrasystoles over the reconstructed phase space of electrocardiogram. Ann Biomed Eng 2010;38 (3):813–23.
  • [44] Nejadgholi I, Moradi MH, Abdolali F. Using phase space reconstruction for patient independent heartbeat classification in comparison with some benchmark methods. Comput Biol Med 2011;41(6):411–9.
  • [45] Povinelli RJ, Johnson MT, Lindgren AC, Ye J. Time series classification using Gaussian mixture models of reconstructed phase spaces. IEEE Trans Knowl Data Eng 2004;16(6):779–83.
  • [46] Srinivasan N, Wong MT, Krishnan SM. A new phase space analysis algorithm for cardiac arrhythmia detection. Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE; 2003.
  • [47] Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol – Heart Circ Physiol 1996;271(1):H244–52.
  • [48] Woo MA, Stevenson WG, Moser DM, Trelease RB, Harper RM. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J 1992;123(3):704–10.
  • [49] Malgina O, Milenkovic J, Plesnik E, Zajc M, Tasic JF. ECG signal feature extraction and classification based on R peaks detection in the phase space. GCC Conference and Exhibition (GCC), 2011 IEEE; 2011.
  • [50] Roopaei M, Boostani R, Sarvestani RR, Taghavi MA, Azimifar Z. Chaotic based reconstructed phase space features for detecting ventricular fibrillation. Biomed Signal Process Control 2010;5(4):318–27.
  • [51] Almasi A, Bagher Shamsollahi M, Senhadji L. Bayesian denoising framework of phonocardiogram based on a new dynamical model. IRBM 2013;34(3):214–25.
  • [52] Marwan N, Romano NC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys Rep 2007;438(5– 6):237–329.
  • [53] Poincaré H. Sur le problème des trois corps et les équations de la dynamique. Acta Mathematica 1890;13:1–270.
  • [54] Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. Eng Med Biol Mag IEEE 2001;20(3):45–50.
  • [55] Hilborn RC. Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press; 2000.
  • [56] Nolte DD. Introduction to modern dynamics: chaos, networks, space and time. Oxford University Press; 2014.
  • [57] Chan HL, Fang SC, Chao PK, Wang CL, Wei JD. Phase-space reconstruction of electrocardiogram for heartbeat classification. World Congress on Medical Physics and Biomedical Engineering. Springer Berlin Heidelberg; 2009. p. 1234–7.
  • [58] Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986;33(2):1134–40.
  • [59] Olofsen E. The identification of strange attractors using experimental time series.[Master's thesis] Holanda: Twente University; 1991.
  • [60] Teschl G. Ordinary differential equations and dynamical systems. American Mathematical Society; 2012.
  • [61] Jurgens H, Peitgen HO, Saupe D. Chaos and fractals: new frontiers of science. Springer; 2004.
  • [62] Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Taylor & Francis; 1984.
  • [63] Yaghoobi Karimu R, Azadi S. Diagnosing the ADHD using a mixture of expert fuzzy models. Int J Fuzzy Syst 2017;1–15.
  • [64] Ye C, Kumar BVKV, Coimbra MT. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng 2012;59(10):2930–41.
  • [65] Zhang Z, Dong J, Luo X, Choi KS, Wu X. Heartbeat classification using disease-specific feature selection. Comput Biol Med 2014;46:79–89.
  • [66] Bazi Y, Alajlan N, AlHichri H, Malek S. Domain adaptation methods for ECG classification. 2013 International Conference on Computer Medical Applications (ICCMA); 2013.
  • [67] Chen S, Hua W, Li Z, Li J, Gao X. Heartbeat classification using projected and dynamic features of ECG signal. Biomed Signal Process Control 2017;31:165–73.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9cdb652-517b-4624-a50f-38e49c428ffb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.