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Abstract Optimization is essential for finding suitable answers to real-life problems. In

particular, genetic (or more generally, evolutionary) algorithms can provide sa-

tisfactory approximate solutions to many problems to which exact analytical

results are not accessible. In this paper, we present both the theoretical and

experimental results on a new genetic algorithm called Dissimilarity and Simi-

larity of Chromosomes (DSC). This methodology constructs new chromosomes

starting with the pairs of existing ones by exploring their dissimilarities and

similarities. To demonstrate the performance of the algorithm, it is run on

17 two-dimensional, 1 four-dimensional, and 2 ten-dimensional optimization

problems described in the literature, and compared with the well-known GA,

CMA-ES, and DE algorithms.The results of the tests show the superiority of

our strategy in the majority of cases.
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1. Introduction

Global optimization algorithms can be divided into two groups: deterministic algo-

rithms and metaheuristic algorithms (see [11]). Metaheuristic methods are helpful for

a wide class of optimization problems where deterministic algorithms are not suitable

(for example, functions with a large number of local extrema). In particular, me-

taheuristic algorithms include Ant Colony Optimization (ACO), Genetic Algorithms

(GAs), Bees Algorithms (BAs), and other bio-inspired techniques.

Evolutionary Algorithms (EAs) constitute a large class of optimization procedu-

res (including classical GAs) that are inspired by the process of natural evolution.

As Eiben and Smith [6] observe, different implementations of EAs (e.g., genetic algo-

rithm, genetic programming, evolutionary strategy) can essentially be summarized by

the following steps:

1. initialize a population randomly and evaluate each candidate,

2. select parents,

3. recombine pairs of parents,

4. mutate the resulting offspring,

5. evaluate each new candidate,

6. select individuals for next generation,

7. repeat from Step 2 until a stopping criterion is satisfied.

In this paper, a new evolutionary optimization algorithm is described that ex-

plores similarities and dissimilarities in pairs of chromosomes. This procedure divides

each population into three unequal parts and then applies new genetic operators to the

first two. Our algorithm is called Dissimilarity and Similarity of Chromosomes (DSC),

and its purpose is to find optimal solutions in numerical optimization problems.

This concept of dividing a population into parts and then working with schemata

and similarity for each part separately is already known in the literature. For example,

in the paper by Han et al. [8], the population was divided into three parts based on the

fitness of chromosomes (the best, middle, and worst fitness groups); then, the common

schema in a population was discovered by using clustering. Later, for the first and

third parts of a population, the number of chromosomes that have some similarity with

the schema was calculated. The percentage of the positions on which the individual

agrees with the schema defines the similarity between an individual and a schema.

A general approach to estimate the expected first hitting time (i.e., the time

when the algorithm finds an optimal solution) was proposed by Yu and Zhou [18]. It

is based on an analysis of EAs with different configurations. This method works with

three mutation operators, a recombination operator, and a time-variant mutation

operator. We are planning to examine the possibility of applying a similar theoretical

analysis to our DSC algorithm in further research.

The organization of the paper is as follows. In Section 2, we introduce two genetic

operators: the similarity operator and dissimilarity operator. These are defined in
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terms of a forma analysis of Radcliffe [14]. Section 3 is devoted to a description of

the DSC algorithm. Section 4 gives an analysis of the experimental results. Section 5

contains a discussion of the figures. Finally, the conclusions are presented in Section 6.

2. Forma analysis of genetic operators

In this section, we define and analyze the two genetic operators used in our DSC algo-

rithm. We apply the abstract forma analysis presented in [14] so that our definitions

may be applied in a more-general setting than only for binary schemata. First, we

must review some definitions.

Let S be a finite search space of some genetic algorithm. Function ψ : S × S →
{0, 1} is called an equivalence relation over S if and only if it satisfies the following

three conditions:

1. ∀x ∈ S : ψ(x, x) = 1,

2. ∀x, y ∈ S : ψ(x, y) = 1 =⇒ ψ(y, x) = 1,

3. ∀x, y, z ∈ S : ψ(x, y) = ψ(y, z) = 1 =⇒ ψ(x, z) = 1.

We define E(S) to be the set of all equivalence relations over S. Given two

equivalence relations ψ, φ ∈ E(S), we define their intersection ψ ∩ φ ∈ E(S) by

(ψ ∩ φ)(x, y) := ψ(x, y) ∧ φ(x, y),

where ∧ denotes logical conjunction (“and”).

For given set Ψ ⊂ E(S), we call subset E ⊂ Ψ a basis for Ψ if and only if the

following two conditions hold:

1. E spans Ψ; that is, each element of Ψ can be constructed by the intersection of

some subset of E:

Ψ ⊂ Span E :=
{
ε ∈ E(S) : ∃Aε ⊂ E such that

⋂
Aε = ε

}
.

2. E is independent ; that is, no member of E can be constructed by an intersection

of other members of E:

∀ε ∈ E,@Aε ⊂ E\{ε} :
⋂
Aε = ε.

Given equivalence relation ψ ∈ E(S), we define Ξψ to be the set of formae

(equivalence classes) induced by ψ. Further, given a set of equivalence relations

Ψ ⊂ E(S), with Ψ = {ψ1, ψ2, ..., ψ|Ψ|}, where |Ψ| is the number of elements of Ψ, we

define ΞΨ to be the set of vectors of formae given as the Cartesian product

ΞΨ := Ξψ1
× Ξψ2

× · · · × Ξψ|Ψ| .

A set of equivalence relations Ψ ⊂ E(S) is said to cover S if and only if, for each

pair of different solutions in S, there exists some relation in Ψ under which the pair

are not equivalent:

∀x ∈ S,∀y ∈ S\{x},∃ψ ∈ Ψ : ψ(x, y) = 0.
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Let E be a basis for a set of equivalence relations Ψ ⊂ E(S) that covers S. The

members of E are called basic equivalence relations, or genes. For a given relation

ε ∈ E, the members of Ξε are called basic formae, or alleles.

A set of equivalence relations E ⊂ E(S) is said to be orthogonal if and only if,

given any |E| equivalence classes induced by different members of E, their intersection

is nonempty:

∀ξ = (ξ1, ξ2, ..., ξ|E|) ∈ ΞE :

|E|⋂
i=1

ξi 6= ∅.

Let Ξ be a set of formae defined over search space S, and let L ⊂ S. The

similarity set of L (defined with respect to Ξ and written Σ(L)) is the intersection of

all those formae to which each solution in L belongs:

Σ(L) :=


⋂
{ξ ∈ Ξ : L ⊂ ξ}, if ∃ξ ∈ Ξ : L ⊂ ξ,

S, otherwise.

For given set E = {ε1, ε2, ..., εn} ⊂ E(S), we define the genetic representation

function ρE : S → ΞE by

ρE(x) := ([x]ε1 , [x]ε2 , ..., [x]εn),

where, for given ε ∈ E(S) and x ∈ S, we denote by [x]ε the equivalence class of x

under ε:

[x]ε := {y ∈ S : ε(x, y) = 1} .

Now, we are able to define the two genetic operators used in our DSC algorithm.

The first one (the similarity operator) can be defined without any extra assumption on

considered set Ψ of equivalence relations. It is, in fact, equal to the random respectful

recombination operator R3 : S × S × Z→ S [14, Def. 59] defined by

R3(x, y, k) := σk′(x, y),

where Z is the set of integers, σi(x, y) is the ith element of the similarity set Σ({x, y})
under some arbitrary enumeration, and k′ := k (mod |Σ({x, y})|). The number k

is interpreted as a random control parameter; thus, R3(x, y, k) returns a randomly

selected element of the similarity set of x and y. The similarity operator is defined as

sim(x, y, k) := R3(x, y, k).

The second operator (the dissimilarity operator) is defined under the additional as-

sumption that orthogonal basis E = {ε1, ε2, ..., εn} for Ψ is given that covers S. Then,

it follows from [14, Thm. 25] that ρE is a bijection. Moreover, we assume that each

basic relation ε ∈ E divides search space S into two equivalence classes (i.e., for each
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gene, there are only two alleles available). For each x ∈ S, we can thus define the

complement of class [x]ε, denoted by [x]ε, as follows:

[x]ε := {y ∈ S : ε(x, y) = 0} .

Of course, [x]ε is also some equivalence class under ε. Since ρE is bijective, we can

also define the opposite element to x, denoted x, as follows:

x := ρ−1
E

(
[x]ε1 , [x]ε2 , ..., [x]εn

)
.

Then, we define the dissimilarity operator (depending on two elements x, y ∈ S and

random control parameter k ∈ Z) by

dis(x, y, k) := sim(x, y, k).

It follows from the theory presented in [14] that the similarity operator possesses

some properties required by a “good” recombination (crossover) operator. In parti-

cular, it respects the formae with respect to which it is defined, in the sense that we

always have sim(x, y, k) ∈ Σ({x, y}). On the other hand, the dissimilarity operator

does not have such properties; it is a composition of the similarity operator and the

operation of taking the opposite of the first argument.

In our DSC algorithm, the chromosomes (i.e., the values of ρE) are simply binary

strings of a fixed length, and the basic equivalence relations in E are determined by

fixed positions in a string (i.e., two strings are equivalent if they have the same value at

a given position). Then, the equivalence relations from Span E are the usual schemata

(each schema is determined by a finite number of fixed positions in a string).

In this particular case, the similarity operator is equivalent to the well-known

uniform crossover (see [14, p. 370]), while the dissimilarity operator is equivalent to

the uniform crossover applied to x and y.

3. DSC algorithm

We consider the following optimization problem:

f : Rn → R

minimize|maximize f(x1, . . . , xn) subject to

xi ∈ [ai, bi], i = 1, . . . , n

where f : Rn → R is a given function.

In the algorithm described below, we use a standard encoding of chromosomes

as found in the book of Michalewicz [12].

In particular, we use the following formula to decode real number xi ∈ [ai, bi]:

xi = ai + decimal(1001...001) · bi − ai
2mi − 1
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where mi is the length of a binary string and “decimal” represents the decimal value

of this string. The value of mi for each variable depends on the length of interval

[ai, bi]. To encode point (x1, . . . xn), we use a decimal string of length m =
∑n
i=1mi.

Let M be a positive integer divisible by 8. The DSC algorithm is described by

the following steps:

1. Generate M chromosomes, each chromosome representing a point (x1, . . . xn).

2. Compute the values of fitness function f for each chromosome in the population.

3. Sort the chromosomes according to the descending (for maximization) or ascen-

ding (for minimization) values of the fitness function.

4. Copy C times the first chromosome and put it in C positions in the first half of

the population randomly, replacing the original chromosomes, where C = M/8.

5. For chromosomes in the first quarter of the population (from 1 to M/4), apply the

dissimilarity operator to the first and second chromosomes, replace the second

chromosome by the offspring, then apply the dissimilarity operator to the (new)

second and third chromosomes, and so on.

6. For chromosomes in the second quarter of the population (from M/4+1 to M/2),

apply the similarity operator to the first and second chromosomes, replace the

second chromosome by the offspring, then apply the similarity operator to the

(new) second and third chromosomes, and so on.

7. Generate chromosomes randomly for the second half of the population. These

will replace the second half of the chromosomes (in positions from M/2+1 to M).

8. Go to Step 2 and repeat until the stopping criterion is reached.

Note. The stopping criterion for our algorithm depends on the example being con-

sidered (see Section 4).

To maintain population diversity, Sultan et al. [17] proposed a simple injection

strategy to the population. They used fix point injection, which means that they

introduced new randomly generated chromosomes to the population for certain num-

bers of generations. We have applied a similar strategy in our DSC algorithm by

generating the second half of each population randomly.

In the paper by M. Lewchuk [10], the author introduces a genetic invariance

algorithm that is a modification of the classical GA. He uses a uniform crossover

operator that is equivalent to our similarity operator, and he also uses a sorting of

the population according to the fitness function values. However, the crossover is

applied only to a pair of individuals for which the difference in their function values

is minimum over all pairs. Note that the uniform crossover and sorting procedure are

used in our DSC algorithm, but we also use a new dissimilarity operator and random

regeneration of a part of the population in each iteration; these last two procedures

do not appear in the genetic invariance algorithm.

In Berretta et al. [2], the authors define the Recombine() procedure (pp. 78–79)

that contains three genetic operators called “rebel”, “conciliator” and “obsequent”.
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They take some alleles from two parents P1 and P2 to copy in the offspring first as

follows:

1) “rebel” copies alleles of P2 that are different from P1,

2) “conciliator” copies alleles in common to P1 and P2,

3) “obsequent” copies alleles of P1 that are different from P2.

Then, the procedure chooses the alleles for the remaining positions in the off-

spring. This can be done by using several different algorithms (random or determi-

nistic). It should be noted that the “rebel” operator is very similar to our dissimilarity

operator (in fact, they are equivalent if a random selection is chosen for the second

part of the procedure). In the same way, the “conciliator” is equivalent to our simila-

rity operator, and “obsequent” is equivalent to our dissimilarity operator applied to

P2 and P1 (in reverse order).

4. Experimental results

In this section, we report on computational testing (by using the Matlab software)

of the DSC algorithm on 19 test functions taken from the literature. After each test,

the result of DSC has been compared with the known global optimum and with the

result of a classical GA taken from the respective reference. The results are presented

in Tables 1–5 below. We have applied the algorithm with 40 chromosomes (see the

results in Table 2), 80 chromosomes (Table 3), and 160 chromosomes (Table 4).

The DSC algorithm has found optimum solutions for some optimization problems

(like Easom, Both’s, Schwefel’s, and Shubert’s) that the classical genetic algorithm

cannot solve, with a minimum success rate of 92% with 80 chromosomes for Schwefel’s

function (Table 2) and a maximum success rate of 100% for the remaining problems.

Observe that, with 160 chromosomes, we have achieved a 100% success rate even for

Schwefel’s example.

In Table 5, we compare the mean of the numbers of iterations for all successful

runs of the proposed DSC (40, 80, and 160 chromosomes). Then, we compare the

rates of success of the DSC and classical GA algorithms. The algorithm was stopped

when either the maximum number of iterations was reached (fixed at 2500) or the

difference between the obtained minimum/maximum fitness and global optimum was

less than or equal to the threshold given in the second column.

The success rates for the GA presented for comparison in the last columns of

Tables 2–5 were taken from the quoted literature; these results were obtained for

populations of between 10 and 100 chromosomes, depending on the specific example.

We have recognized that, for most problems, using 80 chromosomes gives the

best results in terms of both the success rate and number of function evaluations.

The DSC algorithm keeps the best solution from each iteration in the first position

until it is replaced by a better one. Note that the maximum average rate of iterations

was especially high (561) for the Schwefel function, for which the classical genetic

algorithm failed to find a solution (see also Table 3).
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Table 1

Test functions

Function

name
Interval Function

Global

optimum

min/max

Easom
x,y ∈

[−100,100]
f(x,y)=− cos(x) cos(y) exp(−(x−π)2+(y−π)2) f(π,π)=−1, min

Matyas
x,y ∈

[−10,10]
f(x,y)=0.26(x2+y2−0.48xy) f(0,0)=0, min

Beale’s
x,y ∈

[−4.5,4.5]

f(x,y)=(1.5−x−xy)2+(2.25−x+xy2)2

+(2.625−x−xy2)2
f(3,0.5)=0, min

Booth’s
x,y ∈

[−10,10]
f(x,y)=(x+2y−7)2+(2x+y−5)2 f(1,3)=0, min

Goldstein

-Price
x,y ∈[−2,2]

f(x,y)=(1+(x+y+1)2(19−14x+3x2−14y+6xy+3y2))

·(30+(2x−3y)2(18−32x+12x2+48y−36xy+27y2))
f(0,−1)=3, min

Schaffer N.2
x,y ∈

[−100,100]
f(x,y)=0.5+

sin2(x2−y2)−0.5

(1+0.001(x2+y2))2
f(0,0)=0, min

Schwefel’s
x1,x2 ∈

[−500,500]

f(x)=
n∑
i=1

xi·sin
(√
|xi|

)
f(1,1)=0, min

Branins’s
rcos

x1 ∈[−5,10]

x2 ∈[0,15]

f(x1,x2)=a·(x2−b·x2
1+c·x1−d)2+e·(1−f)·cos(x1)+e

a=1, b= 5.1
4·π2 , c=

5
π
, d=6, e=10, f= 1

8π

f(π,2.275) or

f(9.42478,2.475) or

f(−π,12.275)=
0.397887, min

Six-hump

camel back

x1 ∈[−3,3]

x2 ∈[−2,2]
f(x1,x2)=

(
4−2.1x

4
3
1

)
·x2

1+x1x2+
(
−4+4x2

2

)
·x2

2
f(−0.0898,0.7126)

=−1.0316, min

Shubert
x1,x2 ∈

[−10,10]
f(x1,x2)=

(
5∑
i=1

i cos[(i+1)x1+i]

)
·
(

5∑
i=1

i cos[(i+1)x2+i]

)
18 global min

f=−186.7309, min

Martin

and Gaddy
x1,x2 ∈[0,10] f(x1,x2)=(x1−x2)

2·
(
(x1+x2−10)/3

)2
f(5,5)=0, min

Zbigniew

Michalewicz

x1 ∈[−3,12.1]

x2∈[−4.1,5.8]

f(x1,x2)=21.5+x1·sin(4πx1)+x2·sin(20πx2)
f(11.631407,5.724824)

=38.81208, max, [7]

Holder table
x1,x2 ∈

[−10,10]
f(x1,x2)=−

∣∣ sin(x1) cos(x2) exp

(∣∣1−√x2
1+x

2
2

π

∣∣)∣∣ f(8.05502,9.66458) or

f(8.05502,−9.66458) or

f(−8.05502,9.66458) or

f(−8.05502,−9.66458)

=−19.2085, min

Drop-wave
x1,x2 ∈

[−4.12,5.12]

f(x1,x2)=−
1+cos

(
12
√
x2

1+x
2
2

)
0.5(x2

1+x
2
2)+2

f(0,0)=−1,

Levy N.13
x1,x2 ∈

[−10,10]

f(x1,x2)=sin2(3πx1)+(x1−1)2[1+sin(3πx2)]

+(x2−1)2[1+sin(2πx2)]
f(1,1)=0,

Rastrigin’s
xi ∈

[−5.12,5.12]
f(xi)=10·d

d∑
i=1

[x2
i−10 cos(2πx2

i )] f(xi)=0 at xi=0

Sphere

d=2,d=10

xi∈

[−5.12,5.12]
f(xi)=

d∑
i=1

x2
i f(xi)=0 at xi=0

Ackley n=4
xi ∈[−32.768,

32.768]

f(x)=−a·exp
(
−b·
√

1
n

n∑
i=1

x2
i

)
+exp

(
1
n

n∑
i=1

cos(c·xi)
)

+a+exp(1), where a=20,b=0.2,c=2π

f(xi)=0 at xi=0

Sum of

different

powers d=10

xi∈[−1,1] f(xi)=
d∑
i=1
|xi|i+1 f(xi)=0 at xi=0
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Table 2

Best value of functions for 50 runs of DSC algorithm (40 chromosomes)

Function
name

Threshold
of best

Min
number of
iterations

Max
number of
iterations

Mean no. of
iterations

for all
successful

runs

Mean of
the best
solution
fitness

from all
successful

runs

Rate of
success
DSC

Rate of
success

GA

Easom 0.001 31 464 181 −0.99543 100% 0% [5]

Matyas 0.001 4 391 64 0.000505 100% 70% [15]

Beale’s 0.001 5 1349 179 0.000517 98% 6% [9]

Booth’s 0.005 13 1181 321 0.00274 98% 0% [15]

Goldstein–
Price

0.001 46 896 387 3.00038 100% 72% [5]

Schaffer
N.2

0.001 24 1533 476 4.11E-05 100% 0%

Schwefel’s 0.01 94 2390 506 0.07317 50% 0% [5]

Branins’s
rcos

0.001 16 2332 171 0.39853 100% 100%

Six-hump
camel back

0.001 9 215 73 −1.03125 100% 98% [13]

Shubert 1 5 149 67 −185.886 100% 0% [5]

Martin
and
Gaddy

0.001 7 438 53 3.95E-05 100% 1% [5]

Zbigniew
Michalewicz

0.1 40 1500 346 38.81746 100% 73% [7]

Holder
table

0.001 9 535 100 −19.2035 100% 78% [16]
asynchronus

EA

Drop-wave 0.001 30 1621 420 −0.99517 100% 30%

Levy N.13 0.001 47 1700 504 0.000583 100% 70%

Rastrigin’s 0.001 16 330 127 0.00505 100%

100%

with

bit string

0% with

Double

vector(GA)

Sphere
d = 2

0.001 15 395 155 0.003588 100% 100%

Ackley
n = 4

0.001 403 2499 1661 0.280442 62% 100%
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Table 3

Best value of functions for 50 runs of DSC algorithm (80 chromosomes)

Function
name

Threshold
of best

Min
number of
iterations

Max
number of
iterations

Mean no. of
iterations

for all
successful

runs

Mean of
the best
solution
fitness

from all
successful

runs

Rate of
success
DSC

Rate of
success

GA

Easom 0.001 16 286 88 −0.99579 100% 0% [5]

Matyas 0.001 6 97 31 0.000492 100% 70% [15]

Beale’s 0.001 4 646 93 0.00059 100% 6% [9]

Booth’s 0.005 5 980 151 0.003198 100% 0% [15]

Goldstein–
Price

0.001 35 368 134 3.00036 100% 72% [5]

Schaffer
N.2

0.001 5 1023 278 4.11E-05 100% 0%

Schwefel’s 0.01 33 2287 561 0.015643 92% 0% [5]

Branins’s
rcos

0.001 3 890 86 0.39853 100% 100%

Six-hump
camel back

0.001 6 115 39 −1.03129 100% 98% [13]

Shubert 1 4 139 32 −185.781 100% 0% [5]

Martin
and
Gaddy

0.001 6 151 36 3.02E+05 100% 1% [5]

Zbigniew
Michalewicz

0.1 26 713 207 38.81257 100% 73% [7]

Holder
table

0.001 4 163 47 −19.8125 100%
78% [16]
asynchronus

EA

Drop-
wave

0.001 13 816 194 −0.99487 100% 30%

Levy
N.13

0.001 5 1611 290 0.000547 100% 70%

Rastrigin’s 0.001 14 181 71 0.007197 100%

100% with

bit string

0% with

Double

vector (GA)

Sphere
d = 2

0.001 19 186 75 0.004133 100%

100% with

bit string

50% with

Double

vector (GA)

Ackley
n = 4

0.001 372 2171 1042 0.07673 100% 100%
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Table 4

Best value of functions for 50 runs of DSC algorithm (160 chromosomes)

Function
name

Threshold
of best

Min
number of
iterations

Max
number of
iterations

Mean no. of
iterations

for all
successful

runs

Mean of
the best
solution
fitness

from all
successful

runs

Rate of
success
DSC

Rate of
success

GA

Easom 0.001 11 141 61 −0.99927 100% 0% [5]

Matyas 0.001 2 29 13 0.000434 100% 70% [15]

Beale’s 0.001 2 212 48 0.000523 100% 6% [9]

Booth’s 0.001 6 1018 123 0.000595 98% 0% [15]

Goldstein–
Price

0.001 12 106 44 3.000484 100% 72% [5]

Schaffer N.2 0.001 6 731 107 0.00045 100% 0%

Schwefel’s 0.01 26 2301 517 0.07051 100% 0% [5]

Branins’s
rcos

0.001 2 324 40 0.398517 100% 100%

Six-hump
camel back

0.001 1 41 14 −1.03106 100% 98% [13]

Shubert 0.01 10 457 111 −186.716 100% 0% [5]

Martin
and Gaddy

0.001 3 38 14 0.000513 100% 1% [5]

Zbigniew
Michalewicz

0.04 6 297 93 38.81715 100% 73% [7]

Holder
table

0.001 6 725 84 −19.2078 100%
78% [16]
asynchronus

EA

Drop-
wave

0.001 14 708 122 −0.99954 100% 30%

Levy N.13 0.001 4 538 117 0.000471 100% 70%

Rastrigin’s 0.001 17 116 53 0.000442 100%

100% with

bit string

0% with

Double

vector (GA)

Sphere
d = 2

0.001 1 42 12 0.000445 100%

100% with

bit string

50% with

Double

vector (GA)

Ackley
n = 4

0.001 173 1379 552 0.071314 100% 100%

Sphere
function
d = 10

0.1 359 1396 746 0.090271 100% 90%

Sum of

different

powersd=10

0.1 2 39 14 0.020016 100% 80%
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Table 5

Best value of functions for 50 runs of the DSC algorithm (40 vs 80 vs 160 chromosomes)

Function
name

Mean no. of
iterations

for all
successful
runs 40 ch.

Mean no. of
iterations

for all
successful
runs 80 ch.

Mean no. of
iterations

for all
successful

runs 160 ch.

Rate of
success
DSC

(40 ch.)

Rate of
success
DSC

(80 ch.)

Rate of
success
DSC

(160 ch.)

Rate of
success

GA

Easom 181 88 61 100% 100% 100% 0% [5]

Matyas 64 31 13 100% 100% 100% 70% [15]

Beale’s 179 93 48 98% 100% 100% 6% [9]

Booth’s 321 151 123 98% 100% 100% 0% [15]

Goldstein–
Price

387 134 44 100% 100% 100% 72% [5]

Schaffer N.2 476 278 107 100% 100% 100% 0%

Schwefel’s 506 561 557 50% 92% 100% 0% [5]

Branins’s
rcos

171 86 40 100% 100% 100% 100%

Six-hump
camel back

73 39 14 100% 100% 100% 98% [13]

Shubert 500 198 111 100% 100% 100% 0% [5]

Martin
and
Gaddy

53 36 14 100% 100% 100% 1% [5]

Zbigniew
Michalewicz

346 207 93 100% 100% 100% 73% [7]

Holder
table

100 47 84 100% 100% 100%
78% [16]
asynchronus

EA

Drop-wave 420 194 122 100% 100% 100% 40%

Levy N.13 504 290 117 100% 100% 100% 70%

Rastrigin’s 127 71 53 100% 100% 100%

100% with

bit string

0% with

Double

vector (GA)

Sphere
d = 2

155 75 12 100% 100% 100% 100%

Ackley
n = 4

1661 1042 552 62% 100% 100% 100%

Table 6 presents a comparative study of the success rates and number of function

evaluations for the CMA-ES (Covariance Matrix Adaptation Evolution Strategy), DE

(Differential Evolution), and DSC algorithms; it shows that the DSC algorithm is the

most-successful one (see, especially, the Drop-wave function). The Matlab codes for

the CMA-ES and DE algorithms were taken from [3] and [4], respectively.



New genetic algorithm based on dissimilarities and similarities 33

Table 6

Comparison of CMA-ES, DE, and DSC algorithms in terms of mean number of function

evaluations and success rate (30 runs, max. 1000 iterations, 60 chromosomes)

Function
name

CMA-ES
success

rate

Function
evaluations
of CMA-ES

DE
success

rate

Function
evaluations

of DE

DSC
success

rate

Function
evaluations

of DSC

Easom 70% 17.053 100% 3240 100% 7588

Schaffer N.2 90% 6726 100% 5016 100% 8356

Drop-wave 50% 26.470 94% 9.048 100% 13.788

Levy N.13 100% 606 100% 1958 100% 9216

Rastrigin’s 80% 13.134 100% 2388 100% 8022

5. Discussion of figures

Figure 1 shows a two-dimensional view of Easom function. It can be seen that the

DSC algorithm has reached the best solution at the blue point at f(π, π) = −1.

Figure 1. Solutions of Easom problem

Figure 2 shows a two-dimensional view of Schaffer’s function. It can be seen that

the DSC algorithm reached the best solution at the blue point on the focus view in the

upper-right corner of the figure. For this function, it is difficult to reach an optimal

solution, because it contains multi-local minimum solutions close to the best one.

Figures 3–10 show two-dimensional views of Shubert’s problem with 18 optimal

solution points, Branins’s problem with 3 optimum optimal solution points, the Six-

hump camel back problem with 2 optimum points, the Holder table problem with

4 optimum points, the Michalewicz problem, the Drop-wave problem, Schwefel’s pro-

blem, and the Levy N.13 problem with one point optimum solution, respectively.
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Figure 2. Solutions of Schaffer’s problem

Figure 3. Solutions of Shubert’s problem, 18 optimum solutions

Figure 4. Solutions of Branins’s problem
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Figure 5. Solutions of Six-hump camel back problem

Figure 6. Solutions of Holder-table problem

Figure 7. Solutions of Michalewicz
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Figure 8. Solutions of Drop-wave problem

Figure 9. Solutions of Schwefel’s problem

Figure 10. Solutions of Levy N.13 problem
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Figures 11 and 12 show how the best fitness values of the population evolve with

the number of iterations. Here, the red color represents a jump to a better solution.

Figure 11. Finding best solution for Schaffer problem in 140 iterations

Figure 12. Finding best solution for Michalewicz problem in 300 iterations

6. Conclusion

In this paper, a new meta-heuristic optimization algorithm called Dissimilarity and

Similarity of Chromosomes (DSC) is introduced. DSC can be simply implemented

without too many parameters. It includes two genetic operators (the dissimilarity

and similarity operators), population sorting, and random generation of a part of

the population. The experiments have shown the quick convergence and good global

searching ability of our algorithm. The DSC algorithm is easy to understand and uses

a simple classical representation of points in Rn.
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The DSC algorithm has only one parameter to be set by the user: the number

M of chromosomes. Therefore, it is easier to test than the classical GA where the

user must try multiple runs to test different combinations of parameters. For all of

our examples, 80 chromosomes are enough to solve the problem. As Table 5 shows,

there is a significant difference in the rate of success between 40 and 80 chromosomes.

Table 5 also shows that the rate of success of our algorithm is much better than for

the classical GA that has a lot of parameters.
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