PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The basic closures of fluid mechanics in form characteristic for the Finite Volume Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This short article presents all basic “closures” that are needed to supplementation the general set of balance equations in form characteristic for the Finite Volume Method. In subsequent chapters the equation of state, viscous molecular stress tensor, turbulent stress tensor, molecular heat flux, turbulent heat flux and momentum and energy sources were described. This article is a second part of a cycle dedicated for the mathematical basis of Finite Volume Method. The motivation for writing the article follows from the observation that the Finite Volume Method is usually described in greater detail in monographic books, or very briefly in the basic books dedicated to fluid mechanics. This article is an attempt to center justifications of these approaches, so that in the simplest way show the readers the basic knowledge of the so-called Computational Fluid Mechanics. For this reason this article can be treated as a literature review.
Słowa kluczowe
Twórcy
autor
  • Department of Mechanics and Machine Design, University of Warmia and Mazury in Olsztyn
Bibliografia
  • ABDOL-HAMID K.S., PAO S.P., HUNTER C.A., DEERE C.A. 2006. PAB3D Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows. 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada, United States.
  • ADRIAN R.J., CHRISTENSEN K.T., LIU Z.C. 2000. Analysis and interpretation of instantaneous turbulent velocity field. Experiments in Fluids, 29(3): 275–290.
  • BADUR J. 2005. Five lectures on modern thermomechanics fluid. Lectures for Students, on-line, http://www.imp.gda.pl/struktura/o2/z3/publications/wyklady/piecwykladow.pdf (access: May 19, 2011).
  • BOGUSŁAWSKI A., DROBNIAK S., TYLISZCZAK A. 2008. Turbulence – from randomness to the determinism. Engineering Modeling, 36: 41–48.
  • CELIK I.B. 1999. Introductory Turbulence Modeling. Lectures Notes. West Virginia University in Morgantown, Mechanical & Aerospace Engineering Dept., United States.
  • DROBNIAK S., BOGUSŁAWSKI A., TYLISZCZAK A. 2008. Some Remarks on Modelling and Simulation of Turbulence. Journal Of Theoretical And Applied Mechanics, 46(2): 243–256.
  • EASOM G. 2000. Improved Turbulence Models for Computational Wind Engineering. PhD Thesis. University of Nottingham, United Kingdom.
  • Fluent 6.3 User’s Guide. Fluent Inc., September 2006.
  • GRYBOŚ R. 1998. Fundamentals of fluid mechanics. PWN, Warsaw.
  • JOSEPH D. 2005. Interrogations of Direct Numerical Simulation of Solid-Liquid Flows. On-line, Fluid Book, http://www.efluids.com/efluids/books/efluids–books.htm (access: May, 19, 2011).
  • KACZYŃSKI J. 1997. Review of major models of turbulence in computational programs to solve the Reynolds equations. IMP PAN Scientific Issue, 486(1448): 27–50.
  • KARVINEN A., AHLSTEDT H. 2008. Comparison of turbulence models in case of three-dimensional diffuser. Proceedings of Open Source CFD International Conference, Berlin, Germany, 4–5 December, p. 17.
  • MAGAGNATO F. 1998. Kappa – Karlsruhe parallel program for aerodynamics. Task Quarterly, 2: 215–270.
  • MOIN P., MAHESH K. 1998. Direct Numerical Simulation: A Tool In Turbulence Research. Annual Review of Fluid Mechanics, 32: 539–578.
  • PIOMELLI U., SCOTTI A., BALARAS E. 2000. Large-eddy simulation of turbulent flows: from desktop to supercomputer. In Vector and Parallel Processing – VECPAR 2000. (Springer: Berlin), p. 551–577.
  • PUZYREWSKI R., SAWICKI J. 2000. Fundamentals of fluid mechanics and hydraulics. PWN, Warsaw.
  • SAAD T. 2011. Turbulence Modeling for Beginners. On-line, http://www.cfd-online.com/W/images/3/31/Turbulence–Modeling–For–Beginners.pdf (access: May, 24, 2011).
  • SOBIESKI W. 2011. The basic equations of fluid mechanics in form characteristic of the finite volume method. Technical Sciences, 14(2): 299–313.
  • SONIN A.A. 2001. Fundamental Laws of Motion For Particles, Material Volumes and Control Volumes. Lecture notes Massachusetts Institute of Technology, United Sates, on-line, http://web.mit.edu/2.25/www/pdf/fundamental–laws.pdf (access: May 27, 2011).
  • STANISZEWSKI B. 1978. Thermodynamics. PWN, Warsaw.
  • SPALART P.R., DECK S., SHUR M. L., SQUIRES K.D., STRELETS M.KH., TRAVIN A. 2006. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical And Computational Fluid Dynamics, 20: 181–195.
  • UYGUN M., ONBASIOGLU S., AVCI S. 2004. Turbulence Medeling for Computational Fluid Dynamic, Part I: Conceptual Outlook. Journal of Areonautic and Space Technologies, 1(4): 19–26.
  • VAN DER WAALS J.D. 1910. The equation of state for gases and liquids. Nobel Lecture, December 12.
  • VOIGT L.K., SÖRENSEN J.N., PEDERSEN J.M., BRÖNSM. 2003. Review of Four Turbulence Models Using Topology. Eighth International IBPSA Conference Eindhoven, Netherlands, August 11–14.
  • WRÓBLEWSKI W. 2000. Numerical simulation of flow phenomena in thermal turbines. Silesian University of Technology, Energetics, 132: 9–214.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9c95156-0c19-4fa3-8601-4798f5158a26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.