PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Lattice Boltzmann Method to the flow past a sphere

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of fully resolved simulations and large eddy simulations of bluff-body flows obtained by means of the Lattice Boltzmann Method (LBM) are reported. A selection of Reynolds numbers has been investigated in unsteady laminar and transient flow regimes. Computed drag coefficients of a cube have been compared with the available data for validation purposes. Then, a more detailed analysis of the flow past a sphere is presented, including also the determination of vortex shedding frequency and the resulting Strouhal numbers. Advantages and drawbacks of the chosen geometry implementation technique, so called “staircase geometry”, are discussed. For the quest of maximum computational effi- ciency, all simulations have been carried out with the use of in-house code executed on GPU.
Rocznik
Strony
1091--1099
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • 1. Achenbach E., 1972, Experiments on the flow past spheres at very high Reynolds numbers, Journal of Fluid Mechanics, 54, 565-575
  • 2. Achenbach E., 1974, Vortex shedding from sphere, Journal of Fluid Mechanics, 62, 209-221
  • 3. Arcidiacono S., Mantzaras J., Karlin I.V., Frouzakis C., 2007, Lattice Boltzmann method for the simulation of multi-component mixtures, Physical Review E, 76, 046703
  • 4. Arcidiacono S., Mantzaras J., Karlin I.V., 2008, Lattice Boltzmann method for the simulation of catalytic reactions, Physical Review E, 78, 046771
  • 5. Aubard G., Volpiani P.S., Gloerfelt X., Robinet J.C., 2013, Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations, Flow, Turbulence and Combustion, 91, 497-518
  • 6. Chang S.C., Yang Y.T., Chen C.K., Chen W.L., 2013, Application of the lattice Boltzmann method combined with large-eddy simulations to turbulent convective heat transfer, International Journal of Heat and Mass Transfer, 66, 338-348
  • 7. Chiavazzo E., Karlin I.V., Gorban A.N., Boulouchos K.B., 2010, Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations, Combustion and Flame, 157, 1833-1849
  • 8. Clift R., Grace J. R., Weber M.E., 1978, Bubbles, Drops, and Particles, Academic, New York
  • 9. Grucelski A., Pozorski J., 2013, Lattice Boltzmann simulations of flow past an obstacle and in simple porous media, Computers and Fluids, 71, 406-416
  • 10. Grucelski A., Pozorski J., 2015, Lattice Boltzmann simulations of heat transfer in flow past a cylinder and in simple porous media, International Journal of Heat and Mass Transfer, 86, 139-148
  • 11. Hoelzer A., Sommerfeld M., 2009, Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles, Computers and Fluids, 38, 572-589
  • 12. Holmes J., English E., Letchford C., 2004, Aerodynamic forces and moments on cubes and flat plates, with applications to wind-borne debris, Fifth International Colloquim on Bluff Body Aerodynamics and Applications, Ottawa, Canada, 11-15 July 2004
  • 13. Jones D.A., Clarke D.B., 2008, Simulation of Flow Past a Sphere using the Fluent Code, Defence Science and Technology Organisation, Maritime Platforms Division, Victoria, Australia
  • 14. Kajzer A., Pozorski J., Szewc K., 2014, Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods, Journal of Physics: Conference Series, 530, 012019
  • 15. Klotz L., Goujon-Durand S., Rokicki J., Wesfreid J.E., 2014, Experimental investigation of flow behind a cube for moderate Reynolds numbers, Journal of Fluid Mechanics, 750, 73-98
  • 16. Mei R., Yu D., Shyy W., Luo L.-S., 2002, Force evaluation in the lattice Boltzmann method involving curved geometry, Physical Review E, 65, 0412037
  • 17. Pourmirzaagha H., Afrouzi H.H., Mehrizi A.A., 2015, Nano-particles transport in a concentric annulus: a Lattice-Boltzmann approach, Journal of Theoretical and Applied Mechanics, 53, 683-695
  • 18. Prasianakis N., Karlin I.V., 2007, Lattice Boltzmann simulation of thermal flows on standard lattices, Physical Review E, 76, 016702
  • 19. Prasianakis N., Karlin I.V., 2008, Lattice Boltzmann simulation of compressible flows on standard lattices, Physical Review E, 78, 016704
  • 20. Rodriguez I., Lehmkuhl O., Borrell R., Paniagua L., Perez-Segarra C.D., 2013, High performance computing of the flow past a circular cylinder, Procedia Engineering, 63, 166-172
  • 21. Sagaut P., Grohens R., 1999, Discrete filters for large eddy simulation, International Journal of Numerical Methods in Fluids, 31, 1195-1220
  • 22. Saha A.K., 2004, Three-dimensional numerical simulations of the transition of flow past a cube, Physics of Fluids, 16 5, 1630-1646
  • 23. Sakamoto H., Haniu H., 1990, A study on vortex shedding from spheres in a uniform flow, Journal of Fluids Engineering, 112, 4, 386-392
  • 24. Schlichting H., 1979, Boundary-Layer Theory, 7th ed., McGraw-Hill, New York
  • 25. Schoenherr M., Kucher K., Geier M., Stiebler M,. Freudiger S., Krafczyk M., 2011, Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs, Computers and Mathematics with Applications, 61, 3730-3743
  • 26. Smagorinsky J., 1963, General circulation experiments with the primitive equations, Monthly Weather Review, 91, 3, 99-164
  • 27. Stiebler M., Krafczyk M., Freudiger S., Geier M., 2011, Lattice Boltzmann large eddy simulation of subcritical flows around a sphere on non-uniform grids, Computers and Mathematics with Applications, 61, 3475-3484
  • 28. Succi S., 2001, The Lattice Boltzmann Method for Fluid Dynamics and Beyond, Clarendon Press, Oxford
  • 29. Szaltys P., Chrust M., Przadka A., Goujon-Durand S., Tuckerman L.S., Wesfreid J.E., 2011, Nonlinear evolution of instabilities behind spheres and disks, Journal of Fluids and Structures, 28, 483-487
  • 30. Versteeg H.K., Malalasekera W., 2007, An Introduction to Computational Fluid Dynamics: the Finite Volume Method, Pearson Education Ltd., Harlow, England, New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9c6bb2f-aec4-484d-bd76-778d93965e81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.