PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biocomputers information management in the human biological system

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Human life is not just a matter of biology, it is also the structure of bioelectronics, which has an impact on health, illness and human behavior. In this new paradigm of bioelectronics a man in the field of Quantum Processes begins to appear and is understood as a device processing bioelectronics, storing and managing information. Quantum man is the same man as the physiological and anatomical one, but is received on the quantum way. His biological system consists of a biological material that is both electronic properties of piezoelectric material, and semiconductor pyroelectric. In this paradigm, bioelectronics nerve cell and the brain are treated as a quantum computer. The rapid development of molecular electronics and biotechnology will lead to the fact that our lives will have to adapt to the requirements of biological computers and many electronic devices, which will make people recording information in the brain and the school program. It will resemble a tape or a CD. In this new system of teaching the amount of information in the brain is expected to double X, the power of the body but not every psychic will be easy to Adopt this style of teaching, Which will often lead to many disorders of the human personality.
Rocznik
Strony
59--65
Opis fizyczny
Bibliogr. 106 poz.
Twórcy
autor
  • University of Silesia in Katowice, Poland
Bibliografia
  • 1. Adamski A.: Możliwa rola piezoelektryczności w procesie zapłodnienia komórki jajowej. In: Sedlak W., Zon J., Wnuk M. (eds), Bioelektronika. Materiały VI Sympozjum, Katolicki Uniwersytet Lubelski, 20-21 XI 1987. Lublin: RW KUL, 1990, pp. 163-166.
  • 2. Adamski A.: Melanina, enzymy, melatonina w zdrowiu i chorobie. Rybnik: Magnum, 2005.
  • 3. Adamski A.: Psychologiczny wymiar czasu i przestrzeni w ontogenezie człowieka. Bielsko- Biała: Compal, 2007.
  • 4. Adamski A.: Percepcja muzyki, jej wymiar w sztuce i psychologii kwantowej. .Bielsko- Biała: Compal, 2008.
  • 5. Adamski A.: Wpływ ruchu, światła i dźwięku na rozwój osobowości człowieka. In: Kadłubiec D., Adamski A. (eds), Muzyka, światło, ruch w rozwoju osobowości człowieka. .Bielsko- Biała: Compal, 2009, pp.165–181.
  • 6. Adey W. R.: Whispering between cells: Electromagnetic fields and regulatory mechanisms in tissue. Frontier Perspectives 1993, Autumn: 3, 2.
  • 7. Athenstaedt H.: Das Pyroelectrische Verhalten und das permanente elektrische Moment von menschlichen und tierischen Sehnegewebe. Zahnhartgewebe Zell-Forsch 1967, 81: 62-73.
  • 8. Athenstaedt H., 1970: Permanent longitudinal electric polarization and pyroelectric behaviour of collagenous structures and nervous tissue in man and other vertebrates. Nature 1970, 228: 830-834.
  • 9. Athenstaedt H.: Pyroelectric behaviour of integument structures and of thermo, photo and mechanoreceptors. Zeitschrift fur Anatomie und Entwicklungsgescichte 1972, 136: 249-271.
  • 10. Athenstaedt H.: Pyroelectric and piezoelectric properties of vertebrates. Annals of the New York Academy of Science 1974, 2348: 69-94.
  • 11. Athenstaedt H., Claussen H., Schaper P.: Epidermis of human skin: Pyroelectric and piezoelectric sensor layer. Science 1982, 216: 1018 -1020.
  • 12. Athenstaedt H.: Spontaneous polarization and pyroelectric behavior of organisms. Ferroelectrics 1987, 73: 455-466.
  • 13. Baaquie B., Martin F.: Quantum Psyche. Quantum Field. Theory of the Human Psyche. Neuro Quantology 2005, 3(1): 7-42.
  • 14. Bardelmeyer G. H.: Electrical conduction in hydrated collagen. Biopolymer 1973, 12 (10): 2289-2300.
  • 15. Becker R. O.: The significance of bioelectric potentials. Bioelectrochemistry and Bioenergetics 1974, 1: 187-199.
  • 16. Becker R.O. Selden G.: Elektropolis, elektromagnetyzm i podstawy życia, tłum. J. Zon. Warszawa: Instytut Wydawniczy PAX, 1994.
  • 17. Benitez-King G., Ramirez-Rodiguez G., Ortiz L., Meza I.: The neuronal cytoskeleton as a potential therapeutical targest in neurodegenerative diseases and schizophrenia. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 6: 515-533.
  • 18. Bistolfi F.: Biostructures and Radiation. Order Disorder. Torino: Edizioni Minerva Medica. 1991.
  • 19. Bruno J.R. Nicolaus R. A.: Neuromelanin and biological function. Atti dell’ Accademia Pontanianadi Napoli 2004, LIII: 251-281.
  • 20. Bruno J. R,. Nicolaus R. A: A critical review of the function of neuromelanin and an attempt to provide an unified theory. Medical Hypotheses 2005, 65: 791-796.
  • 21. Bulkley D. H.: An electromagnetic theory of life. Medical Hypotheses 1987, 30: 281-285.
  • 22. Cieszyński T.: Pole elektryczne w niektórych poznawanych procesach biologicznych. In: Sedlak, W., Zon J., Wnuk M. (eds), Bioelektronika. Materiały VI Sympozjum, Katolicki Uniwersytet Lubelski, 20-21. XI.1987. Lublin: RW KUL, 1990, pp. 89-95.
  • 23. Caras S., Janata J.: Enzymatically sensitive field effect transistors. In: Mosbach K. (ed.), Immobilized enzymes and cells. San Diego: Academic Press, 1988, Vol. 137, pp. 247-255.
  • 24. Cardenas M. L.: Are the transitory enzyme-enzyme complexes found in vitro also transitory in vivo? If so, are they physiologically important. Journal of Theoretical Biology 1991, 152, 1: 111-113.
  • 25. Chedekel M. R.: Photophysics and photochemistry of melanin, In: Zeise L., Chekedel M.R., Fitzpatrick T.B. (eds), Melanin: its Role in the human photoprotection. Overland Park, KS: Valdenmar Publishing, 1995, pp. 11-21.
  • 26. Chmura J., Sławiński J.: Antioxidative activity of catecholamines and model neuronmelanins as assayed by Electrochemiluminescence. Acta Biologica Cracoviensia. Series Zoologia 2000, 42: 87-94.
  • 27. Cios K. J., Mamitsuka H., Nagashima T., Tadeusiewicz R.: Computational intelligence in solving bioinformatics problems. Artificial Intelligence in Medicine 2005, 35: 1-8.
  • 28. Cope F. W.: Solid state physical mechanism of biological energy transduction. Annals of the New York Academy of Sciences 1974, 227: 636-640.
  • 29. Cope F. W.: A review of the applications of solid state physics concepts to biological systems. Journal of Biological Physics 1975, 3(1): 1-41.
  • 30. Crippa P. R., Cristofoletti V., Romeo N.: A band model for melanin deduced from optical absorption and photoconductivity experiments. Biochimica et Biophysica Acta 1978, 538: 164-170.
  • 31. Detela A.: Biofield (Informational and evolutionary components). Slovene Conference on Cognitive Sciences, Ljubljana, 1997, pp. 1-17.
  • 32. Eley D. D., Metcalfe E.: Photoconduction in proteins. Nature 1972, 239: 344-355.
  • 33. Edmundson D. E., Enns R. H.: The particle-like nature of colliding light bullets. Physical Review 1995, A 51: 2484-2498.
  • 34. Fukada E.: Mechanical deformation and electrical polarization in biological substances. Biorheology 1968, 5: 199-208.
  • 35. Fukada E.: Piezoelectric effect in muscle. Japanese Journal of Applied Physics 1970, 9: 844-849.
  • 36. Fukada E.: Piezoelectric properties of biological macromolecules. Advances in Biophysics 1974, 6: 121-125.
  • 37. Fukada E., Ando I.: Piezoelectricity in oriented DNA films. Journal of Polymer Science. Part A: Polymer Chemistry 1972, 210: 565-567.
  • 38. Fukada E., Hara K.: Piezoelectric effect in blood vessel walls. Journal of the Physical Society of Japan 1968, 26: 777-780.
  • 39. Fukada E., Ueda H.: Piezoelectric effect in muscle. Japanese Journal of Applied Physics 1970, 9: 844-849.
  • 40. Fukada E., Ueda H.: Piezoelectric effect in fibrin films. Reports on Progress in Polymers Physics 1971, 4: 482-484.
  • 41. Fukada E., Yasuda I.: On the piezoelectric effect of bone. Journal of the Physical Society of Japan 1957, 12: 1158-1162, 3091.
  • 42. Fukada E., Yasuda I.: Piezoelectric effects in collagen. Japanese Journal of Applied Physics 1964, 3: 117-121.
  • 43. Giuzelsu A. N., Akcasu A.: Piezoelectric model for nerve conduction. Annals of the New York Academy of Sciences 1974, 238: 239-249.
  • 44. Hagan, S., Hameroff, S. Tuszynski, J.: Quantum computation in brain microtubules? Decoherence and biological feasibility, Physical Reviews 2002, E 65, 061901.
  • 45. Hameroff S. R., Watt R. C.: Information processing in microtubules. Journal of Theoretical Biology 1982, 98: 549-561.
  • 46. Hameroff S. R., Rasmussen S.: Information processing in microtubules: Biomolecular auto-mata and nanocomputers. In: Hong F. T. (ed.): Molecular electronics, biosensors and biocomputers. New York-London: Plenum Press, 1989, pp. 243-257.
  • 47. Hameroff, S.: Consciousness, neurobiology and quantum mechanics, In: Tuszynski, J. (ed.), The Emerging Physics of Consciousness, Berlin-Heidelberg: Springer-Verlag, 2006, pp. 193-253.
  • 48. Hameroff S.: The brain is both neural computer and quantum computer. Cognitive Science 2007, 31: 1035-1045.
  • 49. Jacobson J.: On the electromagnetic nature of life. Pan Minerva Medicine 1989, 31: 151-165.
  • 50. Kawai H.: Electrostriction and piezoelectricity of elongated polymers films. Oyo Buturi 1970, 39: 413-419.
  • 51. King R.: Melanin. A key to freedom. Chicago: Lushena Books, 2001.
  • 52. King R.: African origin of biological psychiatry .Chicago: Lushena Books, 2001.
  • 53. Krajewski T.: Zagadnienie fizyki dielektryków. Warszawa: PWN, 1970.
  • 54. Lang S. B.: Pyroelectric effect in bone and tendon. Nature 1966, 212: 704-705.
  • 55. Liang C. Y., Scalco E. G.: Photoconduction of adenosine in various morphological forms. Nature 1963, 200: 1319-1331.
  • 56. Liboff A. R., Furst M.: Pyroelectric effect in collagenous structures. Annals of the New York Academy of Sciences 1974, 238: 26-36.
  • 57. Liboff A. R.: The electromagnetic field as a biological variable. In: Frey A. H. (ed.), On the nature of electromagnetic field interactions. Austin: RG. Landes, 1994.
  • 58. Liberman E.A., Minina S.V.: Molecular quantum computer of neuron. BioSystems 1995, 35 (2- 3): 203-207.
  • 59. Lomdahl P. S.: What is solitone. Los Alamos: Science, 1984.
  • 60. McGinness J. E.: Mobility gaps: a mechanism for band gaps in melanin. Science 1972, 177: 896.
  • 61. McGinness J. E., Proctor P.: The importance of the fact that melanin is black. Journal of Theoretical Biology 1973, 39: 677-678.
  • 62. McGinness J. E., Corry P. P., Proctor P.: Amorphous semiconductor switching in melanins. Science 1974, 183: 853-854.
  • 63. McGinness J. E., Corry P. M., Armour L.: Melanin. Bindig drugs and ultrasonic induced cytotoxicity. Pigment Cell Res. 1977, 2: 316.
  • 64. Matuszak Z.: Modelowanie komputerowe własności donorowo-akceptorowych melanin. Current Topics in Biophysics. XI Zjazd Polskiego Towarzystwa Biofizycznego, Cieszyn 5-7 września 2001, p. 80.
  • 65. Nicolaus R. A.: Coloured organic semiconductors: melanins. Rendiconto.dell’ Accademia delle Scienze Fisiche e Matematiche 1997, 64: 325-360.
  • 66. Nordlund J. J., Boisy R. E., Hearing V. J., King R. A., Ortonne J. P., Prota G., Ischia M. D.: Napolitano A, (eds): The chemistry of melanins nad related metabolites. Oxford: University Press, 1998, pp. 307-332.
  • 67. Nye J. F.: Właściwości fizyczne kryształów w ujęciu tensorowym i macierzowym. Warszawa: PWN, 1962.
  • 68. Popp F.A.: Photon storage in biological systems. In: Popp E. A., Becker G., Konig H. L., Peschka W. (eds), Electromagnetic Bio-Information. Proceedings of the Sympsium, Marburg, 5 September 1977. Miinchen: Urban Schwrzenberg, 1979, pp. 123-149.
  • 69. Popp F.A.: Biologia światła, tłum. J. Kyryłowicz. Warszawa: Wiedza Powszechna, 1992.
  • 70. Popp, F.A.: Biophotonik - Experimentelle und theoretische Grundlagen nichtthermischer Lichtemission aus lebenden Organismen, sowie Möglichkeiten der Anwendung, Bundesamt für Naturschutz, Schriftenreihe, 2001, H. 67: 171-186.
  • 71. Popp, F.A.: Lebensmittelqualitätsanalysen mithilfe der Biophotonik. Lebensmittel-Technologie 2003, 7-8.
  • 72. Prota G.: Melanins and related metabolites in Black Skin. Pigment Cell Res. 1993, 12: 73-99.
  • 73. Prota G.: The chemistry of melanins and melanogenesis. Progress in the Chemistry of Organic Natural Products 1995, 10: 94-148.
  • 74. Prota G.: Melanins, melanogenesis and melanocytes: Looking at their functional significance from the Chemist's viewpoint. Pigment Cell Res. 2000, 13: 283-293.
  • 75. Rasmussen S. H., Karampurwala R., Vaidyanath K. S., Jensen I. S.: Computational connectionism within neurons: A model of cytoskeletal automata subserving neural networks. Physica 1990, 42: 428-449.
  • 76. Rosenberg B.: Electrical conductivity of proteins. Nature 1962, 193: 364-365.
  • 77. Schultz T. M., Kurtz S., Wolfram L. J., Swartz H., Sarna T.: Paramagnetism in melanins: origin of the intrinsic free radical. First meeting of the European Society for Pigment Cell Research, Sorrento, October 11-14, 1987.
  • 78. Sedlak W.: Bioelektronika – bioplazma – antropologia przyszłości. Zeszyty Naukowe KUL 1976, 19 (1): 3-10.
  • 79. Sedlak W.: Piezoelektryczność związków organicznych i kwantowo-akustyczne podstawy informacji biologicznej. Roczniki Filozoficzne 1977, 25, 4: 149-170.
  • 80. Sedlak W.: Bioelektronika 1967-1977. Warszawa: PAX, 1979.
  • 81. Sedlak W.: Homo electronicus. Warszawa: PIW, 1980.
  • 82. Sedlak W.: Inną drogą. Warszawa: PAX, 1988.
  • 83. Sedlak W.: Homo electronicus. Opole: Ekomed, 1994.
  • 84. Shamos M. H., Lavine L.: Piezoelectric effect in bone. Nature 1963, 197: 81-93.
  • 85. Shamos M. H., Lavine L.: Piezoelectricity as a fundamental properties of biological tissues. Nature 1967, 213: 267-269.
  • 86. Shimomura M.: Electronic communications between molecular associates and enzymes. Kagaku Kyoto 1991, 46 (8): 571-576.
  • 87. Shipov G. I.: Theory of Physical Vacuum, Moscow: NT-Centre, 1993.
  • 88. Shipov G.I.: Proceedings of the sixth seminar "Gravitational energy and gray rational waves". Doubna, Moskwa, 1994.
  • 89. Shipov G.I.: Theoretical estimation of electro torsion radiation. Preprint nr 1. MITPF 21, 1995, pp. 34-42.
  • 90. Shipov G.I.: Unification of interactions in the theory of physical vacuum. Preprint nr 3. MITPF 23, 1996, pp.85-98.
  • 91. Shipov G. I., Akimov A. E.: Torsion fields and their experimental manifestations. In Procedings of International conference: NEW IDEAS in Natural Science,1996 (available from A. V. Frolev, alex@frolov.spb.ru)
  • 92. Slawinski J.: Necrotic photon emission in stress and lethal interactions. Curr. Topics Biophys. 1990, 19: 8-27.
  • 93. Slawinski J.: Photon emission from perturbed and dying organisms – the concept of photon cycling in biological systems. In: Popp F. A., Beloussov L. (eds), Integrative Biophysics Biophotonics. Dordrecht- Boston- London: Kluwer Academic Publishers, 2003, pp. 307-328.
  • 94. Stonier T.: Information and the internal structure of the universe. An Exploration into information Physics. London-New York: Springer Verlag, 1990.
  • 95. Strzelecka T.: Semiconductor properties of natural melanins. Physiological Chemistry and Physics 1982, 14: 223-231.
  • 96. Suhai S.: Theoretical investigation of semiconductive properties in proteins. Biopolymers 1974, 13: 1731-1737.
  • 97. Tadeusiewicz R.: Studying the Functioning of Brain with the Help of Neural Networks. Joranda de Ciencia Polaca, Univesidad La Serena, Chile, 2004, pp. 57-78.
  • 98. Tadeusiewicz R., Augustyniak P.: Information Flow and Data Reduction in the ECG Interpretation Process. In: Zhang Y.T., Xu L.X., Roux C., Zhuang T.G., Tamura T., Galiana H.L. (eds): Innovation from Biomolecules to Biosystems. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, CD version only, paper number 88, 2005.
  • 99. Tadeusiewicz R.: Model of the brain for self-contained domestic experiments ( In Polish: Model mózgu do samodzielnych domowych eksperymentów). Wszechświat - pismo przyrodnicze 2007, 108, 10-12: 278-280.
  • 100. Yasuda L.: On the piezoelectric activity of bone. Central Journal of the Japanese Orthopaedic Surgery Society 1954, 28: 267-269.
  • 101. Young T. E., Babbitt B. W.: Electrochemical study of the oxidation of a methylnoradrenaline and dopamine. Journal of Organic Chemistry 1983, 48: 562-566.
  • 102. Vannini A.: Quantum Models of Consciousness. Quantum Biosystems 2008, 2: 165-184.
  • 103. Wilczok T., Drozdowska-Cader J.: Wyznaczenie właściwości elektrycznych i fotoprzewodnictwa Melanin. Materiały zjazdowe. IV Zjazd PTBiof., Kozubnik, 1979, 42: 76-87.
  • 104. Winquist F. B, Danielsson I., Lundstrom K., Mosbach K.: Use of hydrogensensitive and ammonia - sensitive semiconductor structures in analytical biochemistry: Enzyme transitors. In: Mosbach K., (ed.), Immobilized enzymes and cells. San Diego: Academic Press, 1988.
  • 105. Wnuk M.: Enzymy jako nanoprocesory – perspektywa bioelektroniczna. Roczniki Filozoficzne 1995, 43, 3: 127.
  • 106. Wnuk M.: Istota procesów życiowych w świetle koncepcji elektromagnetycznej natury życia. Lublin: Wydawnictwo KUL, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9c50c6c-f92a-40f9-ab92-47b044d3cec5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.