PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical characterization of PM10 in two small towns located in South Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to analyse the elements and PM10 concentrations in air samples gathered in the winter of 2017/2018 in two small towns, namely Skala and Wadowice. The chemical elements were identified for each sample using the energy dispersive X-ray method. The spectrometer was equipped, among others, with an Mo-X-ray tube which was the source of the photons and the Si(Li) detector. The following chemical elements: Cl, K, Fe, Ca, Zn, Pb, Br, Ti, Cu, Mn, V, Co, Rb, Ni, Sr, and Cr were identifi ed in the samples. In addition, As and Se were identifi ed in Wadowice. First, the results were compared with each other and then with the results for the nearest city. It was observed that the PM10 concentrations were significantly higher than the UE limit value for PM10, which equals 50 μg‧m−3 per 24 h. Moreover, the high concentrations of, among others, K, Pb, Cl or Zn, are likely to be linked with fossil fuels combustion and biomass burning. The levels of element concentrations in Wadowice and Skala resemble the levels observed several years earlier in Krakow.
Słowa kluczowe
Czasopismo
Rocznik
Strony
29--34
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Faculty of Physics and Applied Computer Science AGH University of Science and Technology Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • Faculty of Physics and Applied Computer Science AGH University of Science and Technology Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • Faculty of Energy and Fuels AGH University of Science and Technology Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • Faculty of Physics and Applied Computer Science AGH University of Science and Technology Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • Faculty of Physics and Applied Computer Science AGH University of Science and Technology Mickiewicza 30 Ave., 30-059 Krakow, Poland
autor
  • Faculty of Physics and Applied Computer Science AGH University of Science and Technology Mickiewicza 30 Ave., 30-059 Krakow, Poland
Bibliografia
  • 1. Tarín-Carrasco, P., Morales-Suárez-Varela, M., Im, U., Brandt, J., Palacios-Peña, L., & Jiménez-Guerrero, P. (2019). Isolating the climate change impacts on air-pollution-related-pathologies over central and southern Europe – A modelling approach on cases andcosts. Atmos. Chem. Phys., 19, 9385–9398. https://doi.org/10.5194/acp-19-9385-2019.
  • 2. World Health Organization. (2005). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005, 1–21. Available from https://doi.org/10.1016/0004-6981(88)90109-6.
  • 3. Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., de la Campa, A. S., Artinano, B., Salvador, P., Dos Santos, S. G., Fernandez-Patier, R., Moreno-Grau, S., Nergal, L., Minguillon, M. C., Monfort, E., Gil, J. I., Inza, A., Ortega, L. A., Santamaria, J. M., & Zabalza, J.(2007). Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ., 41(34), 7219–7231. https://doi.org/10.1016/j.atmosenv.2007.05.022.
  • 4. Visser, S., Slowik, J. G., Furger, M., Zotter, P., Bukowiecki, N., Canonaco, F., Flechsig, U., Appel, K.,Green, D. C., Tremper, A. H., Young, D. E., Williams,P. I., Allan, J. D., Coe, H., Williams, L. R., Mohr, C.,Xu, L., Ng, N. L., Nemitz, E., Barlow, J. F., Halios, C. H., Fleming, Z. L., Baltensperger, U., & Prévôt, A. S.H. (2015). Advanced source apportionment of sizeresolved trace elements at multiple sites in London during winter. Atmos. Chem. Phys., 15(19), 11291–11309.https://doi.org/10.5194/acp-15-11291-20115.
  • 5. Zieliński, E., Wielgus, A., Dreliszak, J., & Zukow, W. (2018). Air pollution – selected health effects in Poland. Journal of Education, Health and Sport, 8(12), 641–648. http://dx.doi.org/10.5281/zenodo.2527086.
  • 6. European Council. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. (2008/50/EC).
  • 7. Lin, C., Ceburnis, D., Huang, R. -J., Xu, W., Spohn, T.,Martin, D., Buckley, P., Wenger, J., Hellebust, S., Rinaldi, M., Facchini, M. C., O’Dowd, C., & Ovadnevaite, J. (2019). Wintertime aerosol dominated by solid fuel burning emissions across Ireland: insight into the spatial and chemical variation of submicron aerosol. Atmos. Chem. Phys., 5, 14091–14106. https://doi.org/10.5194/acp-19-14099-2019.
  • 8. Vasev, N. (2017). Governing energy while neglecting health – The case of Poland. Health Policy,121(11), 1147–1153. https://doi.org/10.1016/j.healthpol.2017.09.008.
  • 9. Samek, L., Zwoździak, A., & Sówka, I. (2013). Chemical characterization and source identification of particulate matter PM 10 in a rural and urban site in Poland. Environ. Prot. Eng., 39(4), 91–103. https://doi.org/10.5277/epe130408.
  • 10. Crilley, L. R., Lucarelli, F., Bloss, W. J., Harrison, R.M., Beddows, D. C., Calzolai, G., Nava, S., Valli, G., Bernardoni, V., & Vecchi, R. (2017). Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ. Pollut., 220, 766–778.https://doi.org/10.1016/j.envpol.2016.06.002.
  • 11. Harrison, R. M., Beddows, D. C. S., Hu, L., & Yin, J. (2012). Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos. Chem. Phys., 12(17), 8271–8283.https://doi.org/10.5194/acp-12-8271-2012.
  • 12. Reizer, M., & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas. Air Quality, Atmosphere and Health, 9(5),517–531. https://doi.org/10.1007/s11869-015-0358-z.
  • 13. ALBEKO. (2012). Program ochrony środowiska dla gminy Skała na lata 2012–2015 z perspektywą na lata 2016–2019. Opole: ALBEKO.
  • 14. Belis, C. A., Pikridas, M., Lucarelli, F., Petralia, E., Cavalli, F., Calzolai, G., Berico, M., & Sciare, J. (2019). Source apportionment of fine PM by combining high time resolution organic and inorganic chemical composition datasets. Atmos. Environ. X, 3, 100046.https://doi.org/10.1016/j.aeaoa.2019.100046.
  • 15. Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ., 77, 78–97. https://doi.org/10.1016/j.atmosenv.2013.04.028.
  • 16. Samek, L., Stegowski, Z., & Furman, L. (2016).Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination. Nukleonika, 61(1), 75–83. https://doi.org/10.1515/nuka-2016-0014.
  • 17. Samek, L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Kraków, Poland. Nukleonika, 57(4), 601–606.
  • 18. Visser, S., Slowik, J. G., Furger, M., Zotter, P., Bukowiecki, N., Dressler, R., Flechsig, U., Appel, K., Green, D. C., Tremper, A. H., Young, D. E., Williams, P. I., Allan, J. D., Herndon, S. C., Williams, L. R., Mohr, C., Xu, L., Ng, N. L., Detournay, A., Barlow, J. F., Halios, C. H., Fleming, Z. L., Baltensperger, U., & Prévôt, A. S. H. (2015). Kerb and urban increment of highly time-resolved trace elements in PM10, PM2.5 and PM1.0 winter aerosol in London during ClearfLo 2012. Atmos. Chem. Phys., 15(5), 2367–2386. https://doi.org/10.5194/acp-15-2367-2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9b5fda1-4bc8-40cd-869f-322667d6cdd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.