PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza możliwości zastosowania elastomerowych systemów gąsienicowych w szybkobieżnych maszynach inżynieryjnych. Cz. 2, Ograniczenia techniczne

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of the possibility of using rubber track systems in high-speed engineering machines. Part 2, Technical limitations
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono problemy i wskazano ograniczenia, które wpływają na możliwości wykorzystania gąsienic elastomerowych w szybkobieżnych maszynach inżynieryjnych. Na podstawie przeprowadzonych analiz wskazano ponadto sposoby ukształtowania elastomerowego systemu jezdnego w taki sposób, aby poprawić zdolności robocze maszyn i zminimalizować wady elastomerowych systemów gąsienicowych.
EN
The article presents problems and indicates limitations affecting the possibility of using rubber tracks in high-speed engi-neering machines. On the basis of the conducted analyses, it was also indicated how to shape the running gear in such a way as to improve the working abilities of machines and to minimise the disadvantages of rubber track systems.
Rocznik
Strony
95--109
Opis fizyczny
Bibliogr. 53 poz., il., rys., tab., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] Ansorge D., Soil Reaction to Heavily Loaded Rubber tracks and Tyres, Doctoral thesis, Cranfield University 2007.
  • [2] Arvidsson J., Keller T., Soil stresses under tracks and tyres - measurements and model development, Proceedings International Conference of Agricultural Engineering, Zurich, 6-10.07.2014.
  • [3] Ansorge D., Godwin R.J., The effect of tyres and a rubber track at high axle loads on soil compaction, Part 1: Single axle-studies, Biosystems engineering, 1, 98, 2007, 115-126.
  • [4] Rasool S., Raheman H., Improving the tractive performance of walking tractors using rubber tracks, Biosystems Engineering, 167, 2018, 51-62.
  • [5] Rasool S., Raheman H., Okello J.A., Dwyer M.J., Cottrell B., The Tractive Performance of Rubber Tracks and a Tractor Driving Wheel Tyre, Journal of Agricultural Engineering Research, 59, 1, 1994, 33-43
  • [6] Molari G., Bellentani L., Guarnieri A., Walker M., Sedoni E., Performance of an agricultural tractor fitted with rubber tracks, Biosystems Engineering, 111, 1, 2012, 57-63.
  • [7] Molari G., Mattetti M., Walker M., Field performance of an agricultural tractor fitted with rubber tracks on a low trafficable soil, Journal of Agricultural Engineering, 477, 2015, 162-166.
  • [8] Burdziński z., Teoria ruchu pojazdu gąsienicowego, WKiŁ, Warszawa 1988.
  • [9] Chodkowski A.W., Konstrukcja i obliczanie szybkobieżnych pojazdów gąsienicowych, WKiŁ, Warszawa 1990.
  • [10] Dudziński P., Chołodowski J.A., A method for predicting the internal motion resistance of rubber-tracked undercarriages. Pt. 1. A review of the state-of-the-art methods for modeling the internal resistance of tracked vehicles, Journal of Terramechanics, 96, 2021, 81-100.
  • [11] Wong J.Y., Theory of Ground Vehicles, John Wiley and Sons, New Jersey 2008.
  • [12] Bekker M.G., Theory of Land Locomotion, The University of Michigan Press, Ann Arbor 1956.
  • [13] Arvidsson J., Westlin H., Keller T., Gilbertsson M., Rubber track systems for conventional tractors - Effects on soil compaction and traction, Soil and Tillage Research, 117, 2011, 103-109.
  • [14] Marsili A., Servadio P., Compaction effects of rubber or metal-tracked tractor passes on agricultural soils, Soil and Tillage Research, 37, 1, 1996, 37-45.
  • [15] Keller T., Trautner A., Arvidsson J., Stress distribution and soil displacement under a rubber-tracked and a wheeled tractor during ploughing, both on-land and within furrows, Soil & Tillage Research, 68, 2002, 39-47.
  • [16] Dwyer M.J., Okello J.A., Scarlett A.J., A theoretical and experimental investigation of rubber tracks for agriculture, Journal of Terramechanics, 30, 4, 1993, 285-298.
  • [17] Keller T., Arvidsson J., A model for prediction of vertical stress distribution near the soil Surface below rubber-tracked undercarriage systems fitted of agricultural vehicles, Soil and Tillage Research, 155, 2016, 116-123.
  • [18] Grisso R., Perumpral J., Zoz F., An empirical model for tractive performance of rubber-tracks in agricultural soils, Journal of Terramechanics 43, 2, 2006, 225-236.
  • [19] Riggert R., Fleige F., Kietz B., Gaertig T., Horn R., Stress Distribution under Forestry Machinery and Consequences for Soil Stability, Soil Physics & Hydrology, 22, 2016, 38-47.
  • [20] Ismoilov A., Sellgren U., Andersson K., Löfgren B., A comparison of novel chassis suspended machines for sustainable forestry, Journal of Terramechanics, 58, 2015, 59-68.
  • [21] Gelin O., Björheden R., Concept evaluations of three novel forwarders for gentler forest operations, Journal of Terramechanics, 90, 2020, 49-57
  • [22] Marsili A., Ragni L., Vassalini G., Vibration and Noise of a Tracked Forestry Vehicle, Journal of Agricultural Engineering Research, 70, 3, 1998, 295-306.
  • [23] Bjorheden R., Rutting and vibration levels of the On Track concept forwarder on standardised test tracks, ARBETSRAPPORT 989-2018, Skogforsk 2018.
  • [24] Cleare G.V., Factors affecting the performance of high-speed track layers, Proc. Instn. Mech. Engrs. 178, 2a(2), 1963-64, 51-71.
  • [25] Okello J.A., Dwyer M.J., Cottrel F.B., The tractive performance of rubber tracks and a tractor driving wheel tyre as influenced by design parameter, Journal of Agricultural Engineering Research, 59, 1, 1994, 33-43.
  • [26] Dąbrowska A., Łopatka M.J., Muszyński T., Rubiec A., Badania hydrostatycznego układu napędu jazdy lekkiej bezzałogowej platformy lądowej, XXV Konferencja Problemy Rozwoju Maszyn Roboczych 2012, Zakopane.
  • [27] Guo T., Guo J., Huang B., Peng H., Power consumption of tracked and wheeled small mobile robots on deformable terrains - model and experimental validation, Mechanism and Machine Theory, 133, 2019, 347-364.
  • [28] Dudziński P., Chołodowski J., Energy efficiency of rubber tracked chassis, Journal of KONES, 23, 2, 2016, 97-104.
  • [29] Chołodowski J., Dudziński P., A Method for Experimental Identification of Bending Resistance of Reinforced Rubber Belts, AIP Conference Proceedings 2078, 2019.
  • [30] Chołodowski J., Dudziński P., Method for estimation of road wheels rolling resistance in rubber track systems, 24th International Conference Engineering Mechanics 2018, Svratka, Czech Republic 2018.
  • [31] Dudziński P., Chołodowski J., Ketting M., Experimental tests on rolling resistance of road wheels in rubber tracked undercarriages, 24th International Conference Engineering Mechanics 2018, Svratka, Czech Republic 2018.
  • [32] Chołodowski J., Dudziński P., Ketting M., On the energy losses due to tracks vibrations in rubber track crawler vehicles, Archives of Civil and Mechanical Engineering, 21, 2, 2021, 303-323.
  • [33] Pidaparti R., May A.W., A micromechanical analysis to predict cord-rubber composite properties, Composite Structures, 34, 4, 1996, 361-369.
  • [34] Popa C.M., Gebhardt C., Raje N., Steenwyk B., Kaliske M., Investigation of cord-rubber composite durability by the material force method, Engineering Fracture Mechanics, 229, 2020.
  • [35] Carlson J., Murphy R., How UGVs Physically Fail in the Field, Ieee Transactions On Robotics, 21, 3, 2005, 423-437.
  • [36] Liu W., Cheng K., Wang J., Failure analysis of the rubber track of a tracked transporter, Advances in Mechanical Engineering, 10, 7, 2018, 1-8.
  • [37] Grygier D., The impact of operation of elastomeric track chains on the selected properties of the steel cord wires, Eksploatacja i Niezawodność - Maintenance and Reliability, 19, 1, 2017, 95-101.
  • [38] Wang P., Rui X., Yu H., Study on dynamic track tension control for high-speed tracked vehicles, Mechanical Systems and Signal Processing, 132, 2019, 277-292.
  • [39] Ketting M., Structural design of tension units for tracked vehicles, especially construction machines under the aspect of safety requirements, Journal of Terramechanics, 34, 3, 1997.
  • [40] Mężyk A., Czapla T., Kleinn W., Mura G., Numerical simulation of active track tensioning system for autonomous hybrid vehicle, Mechanical Systems and Signal Processing, 89, 2017, 108-118.
  • [41] Matej J., Terrain-Adaptive Auxiliary Track Tensioning System for Tracked Vehicles, J. Comput. Nonlinear Dynam., 8, 3, 2013.
  • [42] Bekker M.G., Introduction to terrain vehicle system, Ann Arbor, University of Michigan Press, 1969.
  • [43] Kim J., Lee D., Mobile robot with passively articulated driving tracks for high terrainability and maneuverability on unstructured rough terrain: Design, analysis, and performance evaluation, Journal of Mechanical Science and Technology, 32, 11, 2018.
  • [44] Kim J., Jeong H., Lee D., Performance optimization of a passively articulated mobile robot by minimizing maximum required friction coefficient on rough terrain driving, Mechanism and Machine Theory, 164, 2021.
  • [45] Okello J.A., Watany M., Crolla D.A., A Theoretical and Experimental Investigation of Rubber Track Performance Models, Journal of Agricultural Engineering Research, 69, 1, 1998, 15-24.
  • [46] Kheiralla A.F., Alseed Y.G., Eltigani A., Yousif E.A., Conceptual Design of a Rubber Tracked Mini-Vehicle for Small Holders Using Off-Road Vehicle Engineering Techniques, International Conference on Trends in Industrial and Mechanical Engineering, 2012, Dubai.
  • [47] Wieder W.L., Shoop S.A., State of the knowledge of vegetation impact on soil strength and Trafficability, Journal of Terramechanics, 78, 2018, 1-14.
  • [48] Shoop S.A., Coutermarsh B., Cary T., Howard H., Quantifying vegetation biomass impacts on vehicle mobility, Journal of Terramechanics, 61, 2015, 63-76.
  • [49] Shoop S., Cary T., Coutermarsh B., Stanley J., Effect of vegetation biomass on vehicle traction and motion resistance, 12th European Regional Conf. International Society of Terrain-Vehicle Systems, Pretoria, South Africa, September 2012.
  • [50] Mocera F., Soma A., Nicolini A., Grousers Effect in Tracked Vehicle Multibody Dynamics with Deformable Terrain Contact Model, Applied Sciences, 10, 18, 2020.
  • [51] Chen Z., Xue D., Wang G., Cui D., Fang Y., Wang S., Simulation and optimization of the tracked chassis performance of electric shovel based on DEM-MBD, Powder Technology, 390, 2021, 428-441.
  • [52] Dong Z., Quan L., Yang J., Tracked Simulation and optimization of the tracked chassis performance of electric shovel based walking mechanism for large hydraulic excavators, Automation in Construction, 96, 2018, 88-102.
  • [53] Edwin P., Shankar K., Kannan K., Soft soil track interaction modeling in single rigid body tracked vehicle models, Journal of Terramechanics, 77, 2018, 1-14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9af1e1f-1318-4108-8715-a4b511fa61f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.