PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wettability of coal surfaces by water continues to be one of the key factors which determines the success of coal flotation. Consequently, oxidation of coal surfaces is a fundamental issue of interest. In this work, the effect of oxidation on the wetting of coal surfaces and the interaction between water molecules and oxygen-containing sites at the coal surface was investigated based on advancing/receding contact angle measurements and molecular dynamics simulations. For the simulation studies, a flat coal surface was constructed with the assistance of the molecular repulsion between graphite surfaces and the assembly of Wiser coal molecules. Our results indicated that the simulated advancing and receding contact angles were very similar, and both of them decreased, as expected, with an increase of hydroxyl sites at the coal surface. The good agreement between the simulated advancing/receding contact angles and the experimental receding contact angle values suggested that the configuration of the systems and the set of parameters for the simulation were appropriate. The spreading of water is mainly due to the hydrogen bonds formed between the interfacial water molecules and the hydroxyl sites at the coal surface. The hydroxyl groups show stronger hydration capacity than other oxygen-containing groups according to the calculated hydrogen bonds and interaction energies.
Rocznik
Strony
1039--1051
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
  • Institute of Resources and Environmental Engineering, Shanxi University
autor
  • Institute of Resources and Environmental Engineering, Shanxi University
autor
  • Institute of Resources and Environment Engineering, State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi University
autor
  • University of Utah
autor
  • Metallurgical Engineering, University of Utah
Bibliografia
  • ARKHIPOV, V., PALEEV, D.Y., PATRAKOV, Y.F., USANINA, A., 2011. Determination of contact angle on the coal surface. Journal of Mining Science, 47(5), 561-565.
  • BERENDSEN, H., GRIGERA, J., STRAATSMA, T., 1987. The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269-6271.
  • BLOM, L., EDELHAUSEN, L., VANKREVELEN, D., 1957. Chemical structure and properties of coal, 18. Oxygen groups in coal and related products. Fuel, 36(2), 135-153.
  • BOLAT, E., SAǦ LAM, S., PIŞKIN, S., 1998. The effect of oxidation on the flotation properties of a Turkish bituminous coal. Fuel Processing Technology, 55(2), 101-105.
  • BOYLU, F., LASKOWSKI, J.S., 2007. Rate of water transfer to flotation froth in the flotation of low-rank coal that also requires the use of oily collector. International Journal of Mineral Processing, 83, 125-131.
  • CHONG, L., DUTT, M., 2014. Computer simulations of fluid flow over catalytic surfaces for water splitting. Applied Surface Science, 323, 96-104.
  • DEY, S., 2012. Enhancement in hydrophobicity of low rank coal by surfactants-A critical overview. Fuel Processing Technology, 94(1), 151-158.
  • DING, L.P., 2009. Investigation of bituminous coal hydrophobicity and its influence on flotation. Energy & Fuels, 23(11), 5536-5543.
  • DRELICH, J., LASKOWSKI, J.S., PAWLIK, M., 2000. Improved sample preparation and surface analysis methodology for contact angle measurements on coal (heterogeneous) surfaces. Coal Preparation, 21, 247-275.
  • DRELICH, J., MILLER, J.D., 1995. A systematic comparison of sessile-drop and captive-bubble contact angle methods, in: 124th SME Annual Meeting, Denver, CO, USA.
  • DU, H., MILLER, J.D., 2007. Interfacial water structure and surface charge of selected alkali chloride salt crystals in saturated solutions: A molecular dynamics modeling study. The Journal of Physical Chemistry C, 111(27), 10013-10022.
  • DU, H., YIN, X., OZDEMIR, O., LIU, J., WANG, X., ZHENG, S., MILLER, J.D., 2012. Molecular dynamics simulation analysis of solutions and surfaces in nonsulfide flotation systems, in: Molecular Modeling for the Design of Novel Performance Chemicals and Materials, CRC Press, Boca Raton, FL, USA, 107-156.
  • FUERSTENAU, M.C., JAMESON, G.J., YOON, R.-H., Froth flotation: A century of innovation. 2007, SME, Littleton, CO, USA.
  • FUERSTENAU, D.W., YANG, G.C.C., LASKOWSKI, J.S., 1987. Oxidation phenomena in coal flotation. Part 1, correlation between oxygen functional group concentration, immersion wettability and salt flotation response. Coal Preparation: A Multinational Journal, 4, 161-182.
  • GHOSH, T., GARCIA, A.E., GARDE, S., 2001. Molecular dynamics simulations of pressure effects on hydrophobic interactions. Journal of the American Chemical Society, 123(44), 10997-11003.
  • HOWER, J.C., HE, Y., BERNARDS, M.T., JIANG, S., 2006. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers. The Journal of Chemical Physics, 125(21), 214704.
  • JIN, J., DANG, L.X., MILLER, J.D., 2018. Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces. Physicochemical Problems of Mineral Processing, 54(1), 89-101.
  • JIN, J., MILLER, J.D., DANG, L.X., 2014. Molecular dynamics simulation and analysis of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. International Journal of Mineral Processing, 128, 55-67.
  • JORGENSEN, W.L., CHANDRASEKHAR, J., MADURA, J.D., IMPEY, R.W., KLEIN, M.L., 1983. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935.
  • LASKOWSKI, J.S., 1994. Coal surface chemistry and its role in fine coal beneficiation and utilization. Coal Preparation, 14, 115-132.
  • LASKOWSKI, J.S., 2001. Coal flotation and fine coal utilization, Vol. 14, Developments in mineral processing, D.W. Fuerstenau (adv. ed.), Elsevier, Amsterdam, NL.
  • LI, E., DU, Z., LI, D., CHENG, F., 2017a. Specific ion effects of salt solutions on colloidal properties of octadecylamine hydrochloride. Journal of Surfactants and Detergents, 20(2), 483-491.
  • LI, E., DU, Z., YUAN, S., 2013. Properties of a water layer on hydrophilic and hydrophobic self-assembled monolayer surfaces: A molecular dynamics study. Science China Chemistry, 56(6), 773-781.
  • LI, E., DU, Z., YUAN, S., CHENG, F., 2015. Low temperature molecular dynamic simulation of water structure at sylvite crystal surface in saturated solution. Minerals Engineering, 83, 53-58.
  • LI, L., HAO, H., YUAN, Z., LIU, J., 2017b. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate. Applied Surface Science, 419, 557-563.
  • LIANG, L., LI, Z., PENG, Y., TAN, J., XIE, G., 2015. Influence of coal particles on froth stability and flotation performance. Minerals Engineering, 81, 96-102.
  • LIANG, Y.H., WANG, F., ZHANG, H., WANG, J.P., LI, Y.Y., LI, G.Y., 2016. A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite. Fuel Processing Technology, 147, 32-40.
  • LIU, J., GUO, X., 2017. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine. Fuel Processing Technology, 161, 107-115.
  • MARMUR, A., DELLA VOLPE, C., SIBONI, S., AMIRFAZLI, A., DRELICH, J.W., 2017. Contact angles and wettability: Towards common and accurate terminology. Surface Innovations, 5(1), 3-8.
  • NOSE, S., 1991. Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103(103), 1-46.
  • OU, X., WANG, X., LIN, Z., LI, J., 2017. Heterogeneous condensation of water on the mica (001) Surface: A molecular dynamics simulation work. The Journal of Physical Chemistry C, 121(12), 6813-6819.
  • PACHECO-SANCHEZ, J.H., ZARAGOZA, I.P., MARTINEZ-MAGADAN, J.M., 2003. Asphaltene aggregation under vacuum at different temperatures by molecular dynamics. Energy & Fuels, 17(5), 1346-1355.
  • PAN, L., JUNG, S., YOON, R.-H., 2012. A fundamental study on the role of collector in the kinetics of bubble–particle interaction. International Journal of Mineral Processing, 106, 37-41.
  • PAWLIK, M., 2008. The surface properties of coal, in: Handbook of Surface and Colloid Chemistry, Third Edition, K.S. Birdi (ed.), CRC Press, Boca Raton, FL, USA, 655-680.
  • QUAST, K.B., READETT, D.J., 1987. The surface chemistry of low-rank coals. Advances in Colloid and Interface Science, 27(3-4), 169-187.
  • SHRIMALI, K., JIN, J., VAZIRI HASSAS, B., WANG, X., MILLER, J.D., 2016. The surface state of hematite and its wetting characteristics. Journal of Colloid and Interface Science, 477, 16-24.
  • SOKOLOVIĆ, J., STANOJLOVIĆ, R.R., MARKOVIĆ, Z.S., 2006. Effect of oxidation on flotation and electro kinetic properties of coal. Journal of Mining and Metallurgy A: Mining, 42(1), 69-81.
  • SU, H., ZHOU, F., LI, J., QI, H., 2017. Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China. Fuel, 202, 446-454.
  • SUN, H., 1994. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. Journal of Computational Chemistry, 15(7), 752-768.
  • VAN NIEKERK, D., MATHEWS, J.P., 2011. Molecular dynamic simulation of coal–solvent interactions in Permian-aged South African coals. Fuel Processing Technology, 92(4), 729-734.
  • WISER, W.H., 1984. Conversion of bituminous coal to liquids and gases: chemistry and representative processes, in: Magnetic Resonance, Springer, L. Petrakis, J.P. Fraissard (eds.), Dordrecht, NL, 325-350.
  • XING, Y., XU, X., GUI, X., CAO, Y., XU, M., 2017. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 195, 284-289.
  • XU, Z., SONG, K., YUAN, S., LIU, C., 2011. Microscopic wetting of self-assembled monolayers with different surfaces: A combined molecular dynamics and quantum mechanics study. Langmuir, 27(14), 8611-8620.
  • YAN, H., YUAN, S., 2016. Molecular dynamics simulation of the oil detachment process within silica nanopores. The Journal of Physical Chemistry C, 120(5), 2667-2674.
  • YAN, H., YUAN, S.L., XU, G.Y., LIU, C.B., 2010. Effect of Ca2+ and Mg2+ ions on surfactant solutions investigated by molecular dynamics simulation. Langmuir, 26(13), 10448-10459.
  • YARZAB, R.F., ABDEL-BASET, Z., GIVEN, P.H., 1979. Hydroxyl contents of coals: new data and statistical analyses. Geochimica et Cosmochimica Acta, 43(3), 281-287.
  • YE, Y., JIN, R., MILLER, J., 1988. Thermal treatment of low-rank coal and its relationship to flotation response. Coal Preparation, 6(1-2), 1-16.
  • YE, Y., MILLER, J.D., 1988. Bubble/particle contact time in the analysis of coal flotation. Coal Perparation, 5(3-4), 147166.
  • YESILYURT, Z., VAZIRI HASSAS, B., KARAKAS, F., BOYLU, F., 2017. Ultrafine coal flotation and dewatering: Selecting the surfactants of proper hydrophilic-lipophilic balance (HLB). International Journal of Coal Preparation and Utilization, DOI:10.1080/19392699.2017.1383246.
  • YOUNG, T., 1805. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87.
  • ZHANG, L., LU, X., LIU, X., YANG, K., ZHOU, H., 2016. Surface wettability of basal surfaces of clay minerals: Insights from molecular dynamics simulation. Energy & Fuels, 30(1), 149-160.
  • ZHANG, Z., WANG, C., YAN, K., 2015. Adsorption of collectors on model surface of wiser bituminous coal: a molecular dynamics simulation study. Minerals Engineering, 79, 31-39.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9ad8212-00b2-41fa-9683-693d91f292d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.