PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Curing Properties of Furotec 132 Resin- Bonded Foundry Sand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study evaluated the curing properties of natural silica sand moulded with 1% by weight Furotec 132 resin binder catalysed by Furocure CH Fast acid and Furocure CH Slow acid. Physical properties of this sand included an AFS number of 47.35, 4.40 % clay, 0 % magnetic components, 0.13 % moisture, and 64.5 % of the size distribution spread over three consecutive sieves (150 – 600 μm). The sand was washed repeatedly to remove all the clay and oven dried. 2 kg washed sand samples were mulled with pre-determined weights of either catalyst to give 30 %, 50 % and 70 % by weight of 20 g Furotec 132 resin which was added last. Furotec 132 resin + Furocure CH Slow acid catalyst system gives longer bench lives and strip times but the maximum compressive strength in excess of 5000 N/cm2 is attained after more than 8.5 hours curing time irrespective of the weight % of catalyst added relative to the resin. On that basis, exceeding 30 weight % Furocure CH Slow acid catalyst when sand moulding with Furotec 132 resin has neither technical nor economic justification. In comparison, the Furotec 132 resin + Furocure CH Fast acid catalyst system was only capable of producing mould specimens with maximum compressive strength above 5000 N/cm2 at 30 weight % catalyst addition rate. At 50 and 70 weight % catalyst addition rates, the mulled sand rapidly turned dark green then bluish with a significant spike in temperature to about 40 oC, far exceeding the optimum curing temperature of Furotec 132. This high temperature accelerates the curing rate but with a very low degree of resin curing which explains the low compressive strength. In fact the sand grains fail to bond and have a dry, crumbly texture implying dehydration. Thus, not more than 30 weight % Furocure CH Fast acid catalyst should be used in sand moulding.
Rocznik
Tom
Strony
117--123
Opis fizyczny
Bibliogr. 20 poz., fot., tab., wykr.
Twórcy
  • University of Namibia, Windhoek, Namibia
Bibliografia
  • [1] American Foundry Society. (2019, January). Introduction to Foundry Sand. Retrieved January 07, 2019, from https://www.afsinc.org/introduction-foundry-sand.
  • [2] Břuska, M., Beňo, J., Cagala, M. & Jasinková, V. (2012). Dilatometric characterization of foundry sands. Archives of Foundry Engineering. 12(2), 9-14.
  • [3] Grabowska, B., Malinowski, P., Szucki, M. & Byczyński, Ł. (2016). Thermal analysis in foundry technology: Part 1. Study TG–DSC of the new class of polymer binders BioCo. Journal of Thermal Analysis and Calorimetry. 126(1), 245-250.
  • [4] Mashingaidze, M.M. & Nanyala, S.P.P. (2015). Suitability of sand from Oshanas in Ongwediva for use as mould material in sand casting foundries. In Proceedings of the National Research Symposium 2015, 23-25 September 2015 (pp. 99-101). Windhoek, Namibia: National Commission on Research, Science and Technology.
  • [5] Brown, J.R. (Ed.). (2000). Foseco ferrous foundryman's handbook. Oxford: Butterworth-Heinemann.
  • [6] Ammen, C.W. (1979). The complete handbook of sand casting. (1st ed.). New York: McGraw-Hill.
  • [7] Grabowska, B. (2008). Biopolimers – structure, properties and applicability in the foundry industry. Archives of Foundry Engineering. 8(1), 51-54.
  • [8] Kumaravadivel, A. & Natarajan, U. (2013). Optimization of sand-casting process variables – a process window approach. The International Journal of Advanced Manufacturing Technology. 66(5-8), 695-709. DOI: 10.1007/s00170-012-4358-y.
  • [9] Grabowska, B., Holtzer M., Górny, M., Dańko R., & Grabowski, G. (2011). Microstructure and properties of test castings of cast iron made in moulding sands with the BioCo2 binder. Archives of Foundry Engineering. 11(4), 47-50.
  • [10] Holtzer, M. & Dańko, R. (2015). Molds and cores systems in foundry. In M. Holtzer, M. Górny & R. Dańko (Eds.), Microstructure and properties of ductile iron and compacted graphite iron castings (pp. 27-42), Springer Berlin Heidelberg, Retrieved March 06, 2019, from SpringerLink https://link.springer.com/chapter/10.1007/978-3-319-14583-9_2.
  • [11] Bureau of Indian Standards. (1997). IS 1918: Methods of physical tests for foundry sands. Indian Standards Institution. Retrieved November 08, 2018, from https://law.resource.org/ pub/in/bis/S10 /is.1918.1966.pdf.
  • [12] Van Den Berg, K. (2009). Material Safety Data Sheet -Furotec 132. Version 02. FOSECO South Africa.
  • [13] Van Den Berg, K. (2009). Material Safety Data Sheet -Furocure CH Fast. Version 02. FOSECO South Africa.
  • [14] Strobl, S. (2014). The fundamentals of green sand preparation and control. Simpson Group. Retrieved January 12, 2019, from https://www.scribd.com/document/ 340709553/Rpt-sales-Fundamentals-of-Sand-Control.
  • [15] McLaws, I. (1971). Uses and specifications of silica sand. Research Council of Alberta. Retrieved March 07, 2019, from http://www.ags.gov.ab.ca/publications/ESR/PDF/ ESR_1971_04.pdf.
  • [16] Mancuso, G. (2005). Process overview: chemistry and use of furan binders. Mancuso Chemicals. Retrieved March 08, 2019, from http://www.mancusochemicals.com/wp- content/uploads/2013/05/Furan-Binder-Use.pdf.
  • [17] Chanda, M. & Dinesh, S.R. (1978). Monitoring the Curing of Furan Resins through the Exothermic Heat of Reaction. Die Angewandte Makromolekulare Chemie. 69(1031), 85-98.
  • [18] Zhang, J., Xu, Y. C. & Huang, P. (2009). Effect of cure cycle on curing process and hardness for epoxy resin. eXPRESS Polymer Letters. 3(9) 534-541.
  • [19] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and Quantification of Gases Releasing from Furan No Bake Binder. Archives of Foundry Engineering. 16(3), 5-10.
  • [20] Choura, M., Belgacem, N. M. & Gandini, A. (1996). Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromolecules. 29(11), 3839-3850. DOI: 10.1021/ma951522f.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9a1ed1f-0207-446d-ab13-19a8d98ae75d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.