PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unveiling substituent effects in [3+2] cycloaddition reactions of benzonitrile N-oxide and benzylideneanilines from the molecular electron density theory perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The zw- type [3+2] cycloaddition (32CA) reactions of benzonitrile N-oxide with a series of substituted benzylideneanilines have been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-31G(d) computational level. The presence of dimethylamino and methoxy substituents in the aromatic rings of benzylideneaniline makes the reaction more facile relative to the unsubstituted one, while the electron withdrawing nitro substituents relatively induce minimal changes in the energy profile complying with the experimentally observed reaction rates. The presence of non-bonding electron density at the nitrogen atom and the formation of pseudoradical centre at the carbon atom of benzonitrile N-oxide characterise the difference in electronic structure of the TSs relative to the reagents, while the topological analysis of the electron localization function (ELF) and the atoms-in-molecules (AIM) reveal no covalent bond formation at the early TSs. The present MEDT study analyses the experimentally observed substituent effects and complete regioselectivity in the studied 32CA reactions.
Czasopismo
Rocznik
Strony
75--92
Opis fizyczny
Bibliogr. 60 poz., il. kolor., rys.
Twórcy
  • Department of Chemistry, Durgapur Government College, Durgapur-713214, West Bengal, India
  • Department of Chemistry, University of Zakho, Duhok 42001, Iraq
  • Department of Chemistry, Durgapur Government College, Durgapur-713214, West Bengal, India
Bibliografia
  • [1] Breugst, M.; Reissig, H.U.; The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition, Angew. Chem. Int. Ed. 2020, 59, 12293-12307. DOI:10.1002/anie.202003115
  • [2] Padwa, A.; Pearson, W. H. Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. 2002, Wiley: New York.
  • [3] Feuer, H.; Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. 2007, John Wiley & Sons, Inc. DOI:10.1002/9780470191552
  • [4] Eckell, A.; Huisgen, R.; Sustmann, R.; Wallbillich, G.; Grashey, D.; Spindler, E.; 1.3-Dipolare Cycloadditionen, XXXI. Dipolarophilen-Aktivitäten gegenüber Diphenylnitrilimin und zahlenmäßige Ermittlung der Substituenteneinflüsse. Chem. Ber. 1967, 100, 2192-2213. DOI: 10.1002/Cber.19671000714
  • [5] Hemming, K.; Recent developments in the synthesis, chemistry and applications of the fully unsaturated 1,2,4-oxadiazoles. J. Chem. Res. Synop. 2001, 6, 209-221. DOI: 10.3184/030823401103169603
  • [6] Alcaide, B.; Mardomingo, C. L.; Plumet J.; Cativiela C.; Mayoral, J. A.; Orbital control in the 1,3-dipolar cycloaddition of benzonitrile oxide to benzylideneanilines. Can. J. Chem. 1987, 65, 2050-2056. DOI: 10.1139/v87-340
  • [7] Krylov, A.; Windus, T.L.; Barnes, T.; Rimoldi, E.M-.; Nash, J.A.; Pritchard, B.; Smith, D. G. A.; Altarawy, D.; Saxe, P.; Clementi, C.; Crawford, T.D.; Harrison, R.J.; Jha, S.; Pande, V.S.; Gordon,T.H. Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J. Chem. Phys. 2018, 149, 180901-1-11. DOI: 10.1063/1.5052551
  • [8] Domingo, L. R.; Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. DOI: 10.3390/molecules21101319
  • [9] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P.; A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3 + 2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives. J. Org. Chem. 2018, 83, 2182-2197. DOI: 10.1021/acs.joc.7b03093
  • [10] Domingo, L.R.; Ríos-Gutiérrez, M.; Adjieufack, A.I.; Ndassa, I.M.; Nouhou, C.N.; Mbadcam, J.K. Molecular Electron Density Theory Study of Fused Regioselectivity in the Intramolecular [3+2] Cycloaddition Reaction of Nitrones. ChemistrySelect 2018, 3, 5412-5420. DOI: 10.1002/slct.201800224
  • [11] Acharjee N., Salim H. A. M., Chakraborty M., Rao M. P., Ganesh M.; Unveiling the high regioselectivity and stereoselectivity within the synthesis of spirooxindolenitropyrrolidine: A molecular electron density theory perspective, J. Phys. Org. Chem. 2021, e4189. DOI: 10.1002/poc.4189
  • [12] Acharjee, N.; Unravelling the regio- and stereoselective synthesis of bicyclic N,O- nucleoside analogues within the molecular electron density theory perspective, Struct. Chem. 2020, 31, 2147-2160. DOI: 10.1007/s11224-020-01569-x
  • [13] Domingo, L. R., RiozGutiérrez, M., Acharjee N.; A Molecular Electron Density Theory Study of the Chemoselectivity, Regioselectivity, and Diastereofacial Selectivity in the Synthesis of an Anticancer Spiroisoxazoline derived from α-Santonin, Molecules 2019, 24, 832. DOI: 10.3390/molecules24050832
  • [14] Domingo, L. R.; Acharjee, N.; Unveiling the Chemo- and Regioselectivity of the [3+2] Cycloaddition Reaction between 4-Chlorobenzonitrile Oxide and β-Aminocinnamonitrile with a MEDT Perspective, ChemistrySelect 2021, 6, 4521-4532. DOI: 10.1002/slct.202100978
  • [15] Domingo, L. R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. The mysticism of pericyclic reactions: A contemporary rationalisation of organic reactivity based on electron density analysis. Eur. J. Org. Chem. 2018, 1107-1120. DOI: 10.1002/ejoc.201701350
  • [16] Domingo, L. R.; Acharjee, N.; Salim, H. A. M.; Understanding the Reactivity of Trimethylsilyldiazoalkanes participating in [3+2] Cycloaddition Reaction towards Diethylfumarate with a Molecular Electron Density Theory Perspective, Organics 2020, 1, 3-18. DOI:10.3390/org1010002
  • [17] Acharjee, N.; Mondal, A.; Chakraborty, M.; Unveiling the intramolecular [3 + 2] cycloaddition reactions of C,N-disubstituted nitrones from the molecular electron density theory perspective. New J. Chem. 2022, 46, 7721-7733. DOI: 10.1039/D2NJ00888B
  • [18] Domingo, L. R.; Acharjee, N.; Unveiling the Substituent Effects in the Stereochemistry of [3+2] Cycloaddition Reactions of Aryl- and Alkyldiazomethylphosphonates with Norbornadiene within a MEDT Perspective, ChemistrySelect 2021, 6, 10722-10733. DOI: 10.1002/slct.202102942
  • [19] Domingo, L. R.; Acharjee, N.; [3+2] Cycloaddition Reaction of C-Phenyl-N- methyl Nitrone to Acyclic-Olefin-Bearing-Electron-Donating Substituent: A Molecular Electron Density Theory Study, ChemistrySelect 2018, 3, 8373-8380. DOI: 10.1002/slct.201801528
  • [20] Domingo, L. R.; Rioz-Gutiérrez, M.; Acharjee N.; A Molecular Electron Density Theory Study of the Lewis Acid Catalyzed [3+2] Cycloaddition Reactions of Nitrones with Nucleophilic Ethylenes, Eur. J. Org. Chem. 2022, e202101417. DOI: 10.1002/ejoc.202101417
  • [21] Domingo, L. R.; Rioz-Gutiérrez, M.; Pérez, P.; A Molecular Electron Density Theory Study of the Role of the Copper Metalation of Azomethine Ylides in [3 + 2] Cycloaddition Reactions. J. Org. Chem. 2018, 83,10959-10973. DOI: 10.1021/acs.joc.8b01605
  • [22] Domingo, L. R.; Acharjee, N.; Unravelling the Strain-Promoted [3+2] Cycloaddition Reactions of Phenyl Azide with Cycloalkynes from the Molecular Electron Density Theory Perspective, New J. Chem. 2020, 44, 13633-13643. DOI: 10.1039/D0NJ02711A
  • [23] Domingo, L. R.; Acharjee, N.; Unveiling the High Reactivity of Strained Dibenzocyclooctyne in [3+2] Cycloaddition Reactions with Diazoalkanes through the Molecular Electron Density Theory, J. Phys. Org. Chem. 2020, 33, e4100. DOI: 10.1002/poc.4100
  • [24] Ríos-Gutiérrez, M.; Domingo, L. R.; Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 267-282. DOI: 10.1002/ejoc.201800916
  • [25] Domingo L. R.; Acharjee, N.; in.: Molecular Electron Density Theory: A New Theoretical Outlook on Organic Chemistry in Frontiers in Computational Chemistry (Ed.: Ul-Haq, Z.; Wilson A. K.) 2020, 174-227. DOI: 10.2174/9789811457791120050007
  • [26] Domingo, L. R.; Acharjee, N.; Unveiling the Chemo- and Regioselectivity of the [3+2] Cycloaddition Reaction between 4-Chlorobenzonitrile Oxide and β-Aminocinnamonitrile with a MEDT Perspective, ChemistrySelect 2021, 6, 4521-4532. DOI: 10.1002/slct.202100978
  • [27] Sadowski, M.; Utnicka, J.; Wójtowicz, A.; Kula, K.; The global and local Reactivity of C,N diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett. 2023, 12, 421-430. DOI: 10.5267/j.ccl.2022.11.004
  • [28] Zawadzinska, K.; Kula, K. Application of -Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2021, 2, 26-37. DOI: 10.3390/org2010003
  • [29] Żmigrodzka, M.; Sadowski, M.; Kras, J.; Dresler, E.; Demchuk, O.M.; Kula, K.; Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad. 2022, 1, 26-35. DOI: 10.58332/v22i1a02
  • [30] Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R. The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021, 26, 6774. DOI: 10.3390/molecules26226774
  • [31] Becke, A. D.; Edgecombe, K. E.; A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397. DOI: 10.1063/1.458517
  • [32] Silvi, B.; Savin, A.; Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994 371, 683-686. DOI: 10.1038/371683a0
  • [33] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P.; Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. DOI: 10.3390/molecules21060748
  • [34] Geerlings, P.; Proft, F. D.; Langenaeker, W.; Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793-1874. DOI: 10.1021/cr990029p
  • [35] Domingo, L. R.; A new C-C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415-32428. DOI: 10.1039/C4RA04280H
  • [36] Bader, R. F. W.; Atoms in Molecules: A Quantum Theory. 1994, Oxford University Press, Oxford, New York.
  • [37] Bader, R. F. W.; Essén, H.; The characterization of atomic interactions. J. Chem. Phys. 1984, 80, 1943. DOI:10.1063/1.446956
  • [38] García, J. C.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W.; NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625-632. DOI: 10.1021/ct100641a
  • [39] Hehre, W. J.; Radom, L.; Schleyer, PvR.; Pople, J.; In: AB INITIO Molecular Orbital Theory, 1986, Wiley-Interscience, New York.
  • [40] Tomasi, J.; Persico, M.; Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027-2094. DOI: 10.1021/cr00031a013
  • [41] Cancès, E.; Mennucci, B.; Tomasi, J.; A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032-3041. DOI: 10.1063/1.474659
  • [42] Barone, V.; Cossi, M.; Tomasi, J.; Monte-Carlo model for the hydrogenation of alkenes on metal catalyst. J. Comput. Chem. 1998, 19, 404-417. DOI: 10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
  • [43] Fukui, K.; Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161-4163. DOI: 10.1021/j100717a029
  • [44] Gonzalez, C.; Schlegel, H. B.; Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523-5527. DOI: 10.1021/j100377a021
  • [45] González, C.; Schlegel, H. B.; Improved algorithms for reaction path following: Higher‐order implicit algorithms. Chem. Phys. 1991, 95, 5853-5860. DOI: 10.1063/1.461606
  • [46] Reed, A. E.; Weinstock, R. B.; Weinhold, F.; Natural population analysis. J. Chem. Phys. 1985, 83, 735-746. DOI: 10.1063/1.449486
  • [47] Reed, A. E.; Curtiss, L. A.; Weinhold, F.; Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899-926. DOI: 10.1021/cr00088a005
  • [48] Jasiński, R.; A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 2015, 56, 532-535. DOI: 10.1016/j.tetlet.2014.12.007
  • [49] Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; Gaussian 16. Revision A, 2016, 3.
  • [50] Dennington, Roy; Keith, Todd A.; Millam, John M.; GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, 2016.
  • [51] Lu, T.; Chen, F.; Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33:580-592. DOI: https://doi.org/10.1002/jcc.22885
  • [52] Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E.; UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25,1605-1612. DOI: 10.1002/jcc.20084
  • [53] Humphrey, W.; Dalke, A.; Schulten, K.; VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38. DOI: 10.1016/0263-7855(96)00018-5
  • [54] Ríos-Gutiérrez, M.; Domingo, L. R.; The carbenoid-type reactivity of simplest nitrile imine from a molecular electron density theory perspective. Tetrahedron 2019, 75, 1961-1967. DOI: 10.1016/j.tet.2019.02.014
  • [55] Domingo, L. R.; Chamorro, E.; Perez, P.; Understanding the High Reactivity of the Azomethine Ylides in [3+2] Cycloaddition Reactions. Lett. Org. Chem. 2010, 7, 432-439. DOI: 10.2174/157017810791824900
  • [56] Domingo, L. R.; Ríos-Gutiérrez, M.; A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules 2017, 22, 750. DOI: 10.3390/molecules22050750
  • [57] Parr, R. G.; Yang, W.; Density-functional theory of atoms and molecules. 1989, Oxford University Press, New York.
  • [58] Parr, R. G.; Szentpály, L. V.; Liu, S.; Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. DOI: 10.1021/ja983494x
  • [59] Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R.; Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 2002, 58, 4417-4423. DOI: 10.1016/S0040-4020(02)00410-6
  • [60] Domingo, L. R.; Pérez, P.; The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 2011, 9, 7168-7175. DOI:10.1039/C1OB05856H
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9a1bd7c-7763-40d9-96b3-89cca7f8860b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.