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 Abstract: The zw- type [3+2] cycloaddition (32CA) reactions of benzonitrile N-

oxide with a series of substituted benzylideneanilines have been 
studied within the Molecular Electron Density Theory (MEDT) at the 
B3LYP/6-31G(d) computational level. The presence of dimethylamino 

and methoxy substituents in the aromatic rings of benzylideneaniline 
makes the reaction more facile relative to the unsubstituted one, 

while the electron withdrawing nitro substituents relatively induce 
minimal changes in the energy profile complying with the 
experimentally observed reaction rates. The presence of non-

bonding electron density at the nitrogen atom and the formation of 
pseudoradical centre at the carbon atom of benzonitrile N-oxide 
characterise the difference in electronic structure of the TSs relative 

to the reagents, while the topological analysis of the electron 
localization function (ELF) and the atoms-in-molecules (AIM) reveal 

no covalent bond formation at the early TSs. The present MEDT 
study analyses the experimentally observed substituent effects and 
complete regioselectivity in the studied 32CA reactions.  

 Keywords: Benzonitrile N-oxide, Benzylideneanilines, Electron Localization 
Function, [3+2] cycloaddition reactions, MEDT 

    
 Received: 2023.03.06 
 Accepted: 2023.03.20 

 Published: 2023.03.23 
  DOI: 10.58332/scirad2023v2i1a05 

    

../../asmit/Downloads/nivchem@gmail.com


Scientiae Radices, 2, 75-92 (2023) 
 

76 
 

Introduction 

The [3+2] cycloaddition [1] (32CA) reactions represent a well-documented field of 

research owing to the diverse applications of the generated adducts in academia and 

industry2. These reactions involve addition of a three atom component (TAC) to a multiple 

bond system for the construction of five-membered heterocycles [1-3]. Although the 32CA 

reactions of TACs with alkenes and alkynes have received widespread attention [1-3], the 

heteronuclear double bonds also serve as excellent reaction counterparts for the obtainment 

of synthetically useful heterocycles [4,5]. The 32CA reactions of benzonitrile N-oxide (BNO) 1 

with the azomethine double bond of benzylideneanilines 2-5 provide easy synthetic route to 

1,2,4-oxadiazolines [6] (Scheme 1). Alcaide et al. [6] experimentally studied the influence of 

substituent effects and established orbital control on these reactions in terms of FMO theory.  
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Scheme 1: 32CA reactions of benzonitrile N-oxide BNO 1 to benzylideneanilines 2-5 

 With the evolution of computational sciences, software applications for reaction 

studies have been focused extensively since the last two decades [7], allowing theoretical 

chemists to establish precise mechanistic implications. In 2016, Domingo proposed the 

molecular electron density theory [8] (MEDT) to establish the role of electron density 

changes on molecular reactivity. Since last seven years, the MEDT perspective has been 

successfully applied to analyse the experimentally observed region [9,10], stereo- [9-12] and 

chemoselectivity [13,14], reactivity [15-17], substituent effects [18,19], catalysis [20,21], 

strain promotion [22,23] and several other aspects of 32CA reactions [24,25]. Recently, we 

have reported the MEDT analysis of the chemo and regioselectivity observed in the 32CA 

reaction of 4-chlorobenzonitrile N-oxide and β-aminocinnamonitrile for construction of 1,2,4-

oxadiazoles [26]. In 2022, Żmigrodzka et al. [27] presented the combined experimental and 

computational studies on the polar 32CA reaction of N-methyl azomethine ylide and trans-

3,3,3-trichloro-1-nitroprop-1-ene. The fruitful interplay of experiment and theory in the 32CA 

reactions of benzonitrile N-oxide have also been recently reported with the MEDT perspective 
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[28-30]. Herein, we present a detailed MEDT study for the 32CA reaction of BNO 1 to 

benzylideneanilines 2-5 (Scheme 1) with the primary aim to interpret the influence of 

substituents in the aromatic rings of benzylideneanilines. Experimentally, the inclusion of 

electron releasing dimethylamino and methoxy substituents in the aromatic rings of 3 induce 

2.3 fold increase in the reaction rate related to the unsubstituted benzylideneaniline 2, while 

the relative rate of 5 bearing two nitro substituents in the aromatic ring is 0.9 relative to 2.    

 The present MEDT report is presented in four sections (1) at first, the electron 

localization function [31-32] (ELF) topological analysis  is performed to study the electronic 

structure at the ground state (GS) of the reagents 1-5 (2) second, the conceptual density 

functional theory [33-34] (CDFT) indices of the reagents are analysed to predict the 

electronic flux and polar character (3) then the potential energy surface (PES) along the 

feasible reaction paths of the studied 32CA reactions are followed to locate the stationary 

points and the relative enthalpies, entropies and free energies of the products and the 

transition states (TSs) and the global electron density transfer [35] (GEDT) at the TSs are 

calculated to assess the polar character of the reactions (4) finally, the electronic structure of 

the located TSs are studied using the ELF topological analysis and the interatomic 

interactions are characterised by calculation of the QTAIM [36,37] (Quantum theory of atoms 

in molecules) parameters and the non-covalent interaction (NCI [38]) analysis.   

 

Computational methods 

 Optimization of BNO 1, benzylideneanilines 2-5, the products 6-13 and the TSs were 

performed using Berny analytical gradient optimization method [39] at the B3LYP/6-31G(d) 

level of theory. The minima along the PES were characterised by the absence of imaginary 

frequency while the TSs by the presence of one imaginary frequency. Solvent effects in CCl4 

were taken into account by full optimization at B3LYP/6-31G(d)/PCM level of theory within 

the self-consistent reaction field (SCRF) framework [40-42]. The thermodynamic parameters 

were calculated at 298 K and 1 atm in accordance with the experimental reaction 

conditions6. The intrinsic reaction coordinate (IRC) pathways [43] were studied using the 

second order Gonzales-Schlegel integration method [44,45]. GEDT [35] was calculated from 

the Natural bond orbital (NBO) calculations [46,47] at the TSs using the formula GEDT 

(f)=
q f

q


 , where q denotes the NBO derived charges. The CDFT indices were calculated in 

accordance with reference [33]. The relative extent of bond formation at the TSs was 

determined using l index [48] calculated by Eq. 1 

   l = 1- [{rTS
(A-B) - rP

(A-B)}/ rP
(A-B)]     Eq. 1 
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where the distance  between the reacting centres A and B in the TS is given by rTS
(A-B), and 

the distance between the reacting centres A and B in the product is denoted by rP
(A-B). All 

calculations were performed using Gaussian 16 suite of programs [49] and the output files 

were visualised in GaussView [50]. ELF [31,32] (with a high-quality grid with a spacing of 

0.06 Bohr) and QTAIM parameters [36,37] were calculated using the Multiwfn software [51]. 

ELF attractors and localisation domains were visualised using the UCSF Chimera software 

[52] at an isovalue 0.82 a.u. and the NCI isosurfaces were visualised using the VMD 1.9.3 

[53]. 

 

Results and discussion  

Analysis of the ground state (GS) electronic structures of the reagents 

 The electron localization function (ELF) proposed by Becke and Edgecombe [31] 

allows characterizing the electronic regions in a chemical system and consequently 

designating the core, bonding and non-bonding ones in accordance with the illustration of 

Silvi and Savin [32]. Within the MEDT perspective, the ELF analysis is applied to characterise 

the three atom components (TACs) and accordingly correlate their molecular reactivity in 

32CA reactions. The presence of a monosynaptic basin integrating 1 e is identified as a 

pseudoradical [24] centre, while that integrating 2 e designates a carbenoid [54] centre. 

TACs with two and one pseudoradical centres are coined as pseudodiradical [55] and 

pseudo(mono)radical [56] ones. The absence of carbenoid or pseudoradical centre is 

characterised as a zwitterionic [9] TAC. The relative reactivity of these TACs follow the order 

pseudodiradical > pseudo(mono)radical ≈ carbenoid > zwitterionic. Consequently, the least 

reactive of the series, namely the zwitterionic ones, require appropriate electrophilic-

nucleophilic interactions to overcome the high energy barrier unlike the other three types of 

TACs. Herein, the ELF of reagents BNO 1 and the benzylideneanilines 2-5 are studied. The 

ELF localization domains of the reagents are shown in Figure 1 along with the most 

significant valence basin populations. The presence of V(O1), V’(O1), V’’(O1) and V’’’(O1) 

monosynaptic basins associated with the non-bonding electron density at O1, integrating at 

a total population of 5.70 e, the disynaptic basins, V(N2,C3) and V’(N2,C3) associated with 

the N2-C3 triple bond, integrating at a total population of 6.00 e and a disynaptic basin 

V(N2,O1) associated with N2-O1 single bond, integrating 1.52 e characterise the electronic 

structure of the reacting moiety at BNO 1. Note that the absence of pseudoradical or 

carbenoid centre characterises BNO 1 as a zwitterionic TAC. The ELF of the 

benzylideneanilines 2-5 show the presence of two disynaptic basins V(N4,C5) and V’(N4,C5) 

integrating the total population of 2.97 e - 3.00 e, associated with the underpopulated N4-C5 
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double bond and the monosynaptic basin V(N4) integrating between 2.56 e: -2.64 e is 

associated with the non-bonding electron density at N4. 

 

 
 

Figure 1. B3LYP/6-31G(d) ELF localization domain (isovalue = 0.82) and the basin attractor positions 
of reactants 1-5. Protonated basins are shown in blue, monosynaptic basins in red, disynaptic basins 

in green and core basins in magenta color. 

The proposed Lewis-like structures on the basis of ELF study of the reagents 1-5 are 

represented in Figure 2 along with their natural atomic charges. The O1 oxygen atom of BNO 

1 is negatively charged by 0.39 e, while N2 nitrogen and C3 carbon atoms are positively 

charged by 0.17 and 0.22 e. In case of the benzylideneanilines, 2-5, the N4 nitrogen atoms 

are negatively charged between 0.40-0.43 e, while the C5 carbon atoms are positively 

charged between 0.11-0.13 e.  
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Figure 2. Proposed Lewis-like structures together with the natural atomic charges in average number 
of electrons, e, of the reactants BNO 1 and benzylideneanilines 2-5. Negative and positive charges 

are shown in red and blue colors, respectively. 
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Analysis of the CDFT indices at the GS of the BNO 1 and benzylidene anilines 2-5 

 The CDFT [33,34] analysis has been applied in numerous 32CA reactions [9-26] to 

assess the electronic behavior at the GS of the reagents and accordingly predict the polar 

character of the reactions. The electronic chemical potential µ, global electrophilicity ω, 

chemical hardness η and global nucleophilicity N calculated at the GS of the reagents at the 

B3LYP/6-31G(d) computational level are given in Table 1. 

 

Table 1. B3LYP/6-31G(d) electronic chemical potential μ, chemical hardness η, electrophilicity ω, and 

nucleophilicity N, in eV, of the reactants 1- 5.  

 

 μ η ω N 

1 -3.82 5.03 1.45 2.78 

2 -3.37 4.41 1.29 3.54 

3 -2.91 3.70 1.15 4.35 

4 -4.49 3.27 3.09 2.99 

5 -5.02 3.62 3.48 2.29 

 

 The electronic chemical potential µ [57] of BNO 1 (µ= -3.82 eV) is less than that of 

benzylideneanilines 2 (µ= -3.37 eV) and 3 (µ= -2.91 eV) indicating electronic flux from the 

benzylideneanilines 2 and 3 to BNO 1, while the small difference in electronic chemical 

potentials suggests low polar character of the corresponding 32CA reactions. On the other 

hand, µ of BNO 1 is greater than that of 4 (µ= -4.49 eV) and 5 (µ= -5.02 eV), suggesting 

electronic flux from BNO 1 to the benzylideneanilines 4 and 5 . The electrophilicity ω [58,59] 

and nucleophilicity N [55] indices of BNO 1 are 1.45 and 2.78 eV, respectively, allowing its 

classification as a moderate electrophile (0.80 eV < ω < 1.50 eV) and a moderate 

nucleophile (2.00 eV < N < 3.00 eV). The electrophilicity ω index of benzylideneanilines 2 

and 3 are 1.29 and 1.15 eV, being classified as moderate electrophiles and the 

nucleophilicity N index are 3.54 and 4.35 eV being classified as the strong nucleophiles (N > 

3.00 eV) within the standard electrophilicity [59] and nucleophilicity [60] scales. The 

electrophilicity ω of benzylideneanilines 4 and 5 are 3.09 and 3.48 respectively being 

classified as strong electrophiles and the corresponding nucleophilicity indices are 2.99 and 

2.29 eV, respectively, classified as moderate nucleophiles. Note that the presence of electron 

withdrawing nitro substituents in 4 and 5 considerably increases the electrophilicity and 

decreases the electronic chemical potential, while the presence of electron releasing 

dimethylamino and methoxy substituents in 3 decreases the electrophilicity and increases 

the electronic chemical potential relative to the unsubstituted benzylideneaniline 2, 

suggesting the influence of substituents on the electronic behavior of the 

benzylideneanilines.     
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Exploring the potential energy surface (PES) along the zw-type 32CA reaction of BNO 

1 with benzylideneanilines 2-5 
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Scheme 2. Studied reaction paths associated with the 32CA reactions of BNO 1 and 
benzylideneanilines 2-5 

 The 32CA reaction of BNO 1 and benzylideneanilines 2-5 can take place along two 

regioisomeric reaction paths I and II. Path I and Path II are associated respectively with the 

addition of C3 of BNO 1 to N4 and C5 of the benzylideneanilines (Scheme 2). Search for the 

stationary points along these two reaction paths allowed location of the reagents 1-5, 

products 6-13 and transition states (TSs) TS1-TS8 along the potential energy surface of 

each 32CA reaction. Location of one TS revealed one-step mechanism in each case. The 

relative enthalpies, entropies and free energies of the TSs and the products in CCl4 at room 

temperature are given in Table 2. Analysis of the thermodynamic profile allows arriving at 

some interesting conclusions (i) The 32CA reaction between BNO 1 and the reagents 2-5 

along the reaction path I shows negative reaction Gibbs free energies between -13.1 and -

15.5 kcal mol-1 suggesting exergonic character under kinetic control. On the other hand, the 

reaction free energies along path II are positive between 13.5 and 17.0 kcalmol-1 suggesting 

endergonic reaction. The reaction free energies of products 6, 7, 8 and 9 are lowered than 

their relative regioisomers 10, 11, 12 and 13 by 26.6-32.4 kcalmol-1 and the corresponding 

reaction enthalpies are lowered between 26.8 and 31.5 kcalmol-1, indicating the feasible 

generation of the cycloadducts through path I in complete agreement with the experiments6. 

(ii) The activation free energy of TS3 and TS5 is lowered than that of TS1 by 2.7 and 2.2 

kcal mol-1 consistent with the experiments showing higher relative rate constant of 3 and 4 

relative to 2, while that of TS1 is lowered than that of TS7 by only 0.4 kcal mol-1 consistent 

with the comparable rate constant 0.9 of 5 relative to 2. Note that electron releasing 
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substituents -NMe2 and -OMe make the reaction more feasible relative to the unsubstituted 

one, while electron withdrawing nitro substitution shows minimal influence on the reaction 

feasibility (iv) the activation free energies along path I are increased by 14-14.3 kcalmol-1 

relative to the activation enthalpies due to presence of unfavourable entropies in these 

bimolecular 32CA reactions. 

 
Table 2. B3LYP/6-31G(d) relative enthalpies (∆H, in kcal·mol-1), entropies (∆S, in cal·mol-1K-1) and 
Gibbs free energies (∆G, in kcal·mol-1), computed in CCl4, of the stationary points involved in the 32CA 
reaction of BNO 1 and benzylideneanilines 2-5 along with GEDT in average number of electrons, bond 

developement index (lC3-N4/C3-C5 and lO1-C5/O1-N4) and differences between the bond developement index 
(∆l) at the TS1-TS8. 
 

 ∆H ∆S ∆G GEDT lC3-N4/C3-C5 lO1-C5/O1-N4 ∆l 

TS1 10.4 -47.3 24.5 0.06 0.559 0.245 0.314 

6 -29.1 -49 -14.5     

TS2 20.4 -47.7 34.6 0.03 0.723 0.397 0.327 

10 -1.1 -50 13.8     

TS3 7.8 -46.8 21.8 0.09 0.566 0.227 0.34 

7 -30.0 -48.8 -15.5     

TS4 17.9 -43.7 31 0.03 0.702 0.313 0.39 

11 -0.6 -47.8 13.7     

TS5 8.0 -48 22.3 0.02 0.565 0.329 0.237 

8 -29.7 -48.1 -15.4     

TS6 27.3 -47.2 41.4 0.07 0.711 0.462 0.249 

12 1.8 -50.9 17     

TS7 10.6 -48.2 24.9 0.01 0.562 0.462 0.100 

9 -28.4 -51.3 -13.1     

TS8 19.7 -46.8 33.6 0.12 0.746 0.453 0.292 

13 -1.6 -50.6 13.5     

 

 The B3LYP/6-31G(d) optimized geometry of the TSs associated with the 32CA 

reactions are given in Figure 3. The forming C-O bond distances in TS1, TS3, TS5 and TS7 

are 2.478, 2.497, 2.378, and 2.354 Å in gas phase and 2.525, 2.549, 2.398 and 2.268 Å in 

CCl4, while the forming C-N bond distances are 2.016, 2.000, 2.006 and 2.029 Å in gas phase 

and 2.012, 1.997, 2.005 and 2.026 Å in CCl4, suggesting minimal solvents effects on the 

bond distances. The forming bond distances are greater than 2.0 Å, implying that the 

formation of C-N and C-O bond distances have not been started at these early TSs [24].  In 

each case, the bond development index [48] lC3-N4/C3-C5 is greater than that of lO1-C5/O1-N4, 

suggesting earlier C3-N4/C3-C5 bond formation relative to the forming O1-C5/O1-N4 bond. 

The asymmetric index Δa denotes the difference between the bonding development index lC3-

N4/C3-C5 and lO1-C5/O1-N4 and measures the extent of asynchronicity in the bond formation 

process [48]. The polar character of these 32CA reactions were evaluated from the global 
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electron density theory [35] (GEDT) calculations. GEDT values higher than 0.2 e are 

indicative of the polar character, while those less than 0.05 e imply non-polar character. 

Herein, the GEDT at TS1 and TS3 are 0.06 and 0.09 indicating that the 32CA reaction of 

BNO 1 with 2 and 3 show low polar character, while that of TS5 and TS7 are 0.02 and 0.01 

e indicating that the 32CA reaction of BNO 1 with 4 and 5 show non-polar character.  

 

Figure 3. B3LYP/6-31G(d) optimized gas phase geometries of TSs associated with the 32CA reaction 
of BNO 1 and benzylideneanilines 2-5. Distances are given in angstroms. Distances in CCl4 are given 
in parentheses. 

 

Topological analysis of the ELF and AIM at the TSs 

 The ELF [31,32] topological analysis at the TSs was performed to study the electronic 

structure. The most significant ELF valence basin populations and the ELF localization 

domains are represented in Figure 4, The ELF study at the TSs allowed arriving at some 

appealing conclusions (1) The ELF of TS1 shows the presence of one disynaptic V(N2,C3) 

basin integrating 3.47 e, indicating depopulation of 2.53 e of the N2-C3 bonding region 

relative to BNO 1. Similarly, the N2-C3 bonding region is depopulated between 1.86-2.90 e 

at TS2-TS8 relative to BNO 1 indicating rupture of the N2-C3 triple bond at the TSs (2) The 

ELF of TS1-TS8 also shows the presence of monosynaptic V(N2) basin integrating between 
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2.10 (TS8) and 2.32 e (TS3) associated with the accumulation of non bonding electron 

density at N2 nitrogen deriving electron density from the C3-N2 bonding region. (3) The ELF 

of TS1 doesn't show the presence of monosynaptic V(C3) basin, while TS3, TS5 and TS7 

show the presence of monosynaptic V(C3) basins associated with the formation of 

pseudoradical centre at C3. (4) The ELF of TS2, TS4, TS6 and TS8 show the presence of 

monosynaptic basins V(C3) and V(C5) associated with the pseudoradical centres at C3 and 

C5 (5) The ELF of TSs do not show the disynaptic basins corresponding to the formation of 

new covalent bonds, consistent with the forming bond distances greater than 2.0 Å (Figure 

3).  

 

Figure 4. B3LYP/6-31G(d) ELF basin attractor positions and the most significant ELF valence basin 
populations of TSs associated with the 32CA reaction of BNO 1 and benzylideneanilines 2-5 

 The AIM [36,37] topological analysis was performed to predict the interatomic 

interaction at the TSs. total electron density, ρ (e·Å-3), and Laplacian of electron density, 

2 ( )
c

r  (e·Å-5) at the TSs and are given in Table 3. The bond critical points BCP1 and 

BCP2 at the TSs are respectively located at the interatomic regions associated with the 

forming C3-N4/C3-C5 and O1-C5/O1-N4 bonds. The total electron density ρ less than 0.1 e 

and positive Laplacian of electron density (except minimally negative at BCP1 of TS2) at the 

TSs indicate non-covalent interactions at the TSs, consistent with the ELF study and the 
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forming bond distances revealing that the formation of covalent bonds has not been started 

at the TSs. The NCI isosurfaces at the TSs are shown in Figure 5. The green isosurfaces 

indicate weak non-covalent interactions at the TSs.  

Table 3. B3LYP/6-31G(d) total electron density, ρ (e·Å-3), and Laplacian of electron density, 
2 ( )

c
r  

(e·Å-5), at BCP1 and BCP2 of the TSs associated with the 32CA reaction of BNO 1 and 

benzylideneanilines 2-5. 

 
 

Gas 

Phase 
TSs 

BCP1(C3-N4/C3-C5) BCP2(O1-C5/O1-N4) 

ρ 
2 ( )

c
r  ρ 

2 ( )
c

r  

TS1 0.078 0.101 0.028 0.071 

TS2 0.093 -0.003 0.037 0.116 

TS3 0.080 0.098 0.027 0.069 

TS4 0.090 0.004 0.030 0.090 

TS5 0.079 0.097 0.034 0.085 

TS6 0.090 0.001 0.041 0.130 

TS7 0.076 0.100 0.035 0.088 

TS8 0.097 -0.001 0.067 0.206 

 

 

Figure 5. NCI isosurfaces (isovalue = 0.5), in the range 0.04 < sign(λ2)ρ < 0.04 a.u., of TSs 
associated with the 32CA reactions of BNO 1 and benzylideneanilines 2-5. 
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Conclusion 

The 32CA reactions of benzonitrile N-oxide (BNO) 1 with benzylideneanilines 2-5 have been 

studied at the B3LYP/6-31G(d) level of theory. Topological analysis of the ELF allows to 

classify the zw- type reactivity of BNO 1, and the CDFT analysis suggests lower electronic 

chemical potential of BNO 1 relative to the benzylideneanilines 2 (unsubstituted) and 3 

(consisting of electron releasing dimethylamino and methoxy substitution at the aromatic 

rings). On the other hand, the electronic chemical potential of BNO 1 is higher than that of 

the benzylideneanilines 4 and 5 bearing nitro substituents. BNO 1, and the 

benzylideneanilines 2 and 3  are classified as a moderate electrophile, while 4 and 5 are 

classified as strong electrophiles, indicating the influence of aromatic substitution on the 

electronic behaviour of the benzylideneanilines. Analysis of the PES along the reaction path 

suggests exergonic character of the addition along the O1-C5/C3-N4 regioisomeric path and 

the activation free energies of the TSs follow the order  TS3 > TS5 > TS1 > TS7, 

consistent with the experimentally observed relative reaction rates implying facile reaction 

due to introduction of the electron releasing substituents in the aromatic rings and minimal 

influence of the electron withdrawing nitro substituents. These 32CA reactions follow one-

step mechanism with asynchronicity and the asymmetric index of the forming new bonds are 

between 0.10 to 0.39. The GEDT at the TSs reveal that the 32CA reactions of 2 and 3 show 

low polar character, while that of 4 and 5 are non-polar ones. Topological analysis of the 

ELF suggests that the activation energy is associated with the formation of pseudoradical 

centre at C3 and accumulation of non-bonding electron density at N2 nitrogen by 

depopulation of the C3-N2 bonding electron density along the reaction path and the 

formation of new covalent bonds have not been started at the TSs. The NCI analysis 

characterises weak non-covalent interactions at the TSs revealed from the total electron 

density and positive Laplacian at the BCPs associated with the forming C-N and C-O bonds.   
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