PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing mechanical behavior of ABS-SiO2 polymer-based nanocomposite based on ANOVA method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fabrication of polymer-based nanocomposites by means of twin extruders is a typical method for manufacturing lightweight and high-strength structures. However, selection of the optimal parameters for this process to study the material characteristics is important. The primary aim of the present study was to ascertain the optimum extruder temperature and nanosilica content in an acrylonitrile-butadiene-styrene matrix composite. The response surface methodology was based on two factors and three levels. The identification of the effect of the parameters on the fatigue behavior of the fabricated composite was comprehensively analyzed. The results were analyzed using scanning electron microscopy (SEM). The obtained results revealed that up to 4% nano-SiO2 improves tensile strength and reduces the impact toughness. On the other hand, an increase in the extrusion temperature yields a higher impact toughness and lower tensile strength. The optimization results showed that 2.5% nanosilica and the extrusion temperature of 225°C result in the maximum tensile strength of 41 MPa, and impact toughness of 30 KJ/m2.
Rocznik
Strony
61--69
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Islamic Azad University, Department of Mechanical Engineering, Sari Branch, Sari, Iran
  • Islamic Azad University, Department of Mechanical Engineering, Sari Branch, Sari, Iran
Bibliografia
  • [1] Bohatka T., Moet A., The effect of load level on the mechanism of fatigue crack propagation in ABS, Journal of Materials Science 1995, 30(18), 4676-4683.
  • [2] Li Q., Tian M., Kim D., Zhang L., Jin R., Compatibility and thermal properties of poly (acrylonitrile-butadiene-styrene) copolymer blends with poly (methyl methacrylate) and poly (styrene‐co‐acrylonitrile), Journal of Applied Polymer Science 2002, 85(13), 2652-2660.
  • [3] Zheng K., Chen L., Li Y., Cui P., Preparation and thermal properties of silica‐graft acrylonitrile‐butadiene‐styrene nanocomposites, Polymer Engineering & Science 2004, 44(6), 1077-1082.
  • [4] Jang L.W., Kang C.M., Lee D.C., A new hybrid nanocomposite prepared by emulsion copolymerization of ABS in the presence of clay, Journal of Polymer Science Part B: Polymer Physics 2001, 39(6), 719-727.
  • [5] Wang S., Hu Y., Song L., Wang Z., Chen Z., Fan W., Preparation and thermal properties of ABS/montmorillonite nanocomposite, Polymer Degradation and Stability 2002, 77(3), 423-426.
  • [6] Stretz H., Paul D., Cassidy P., Poly (styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: a model system for ABS nanocomposites, Polymer 2005, 46(11), 3818-3830.
  • [7] Pourabas B., Raeesi V., Preparation of ABS/montmorillonite nanocomposite using a solvent/non-solvent method, Polymer 2005, 46(15), 5533-5540.
  • [8] Jang B.N., Wilkie C.A., The effects of clay on the thermal degradation behavior of poly (styrene-co-acrylonitirile), Polymer 2005, 46(23), 9702-9713.
  • [9] Modesti M., Besco S., Lorenzetti A., Causin V., Marega C., Gilman J., Fox D., Trulove P., De Long H., Zammarano M., ABS/clay nanocomposites obtained by a solution technique: Influence of clay organic modifiers, Polymer Degradation and Stability 2007, 92(12), 2206-2213.
  • [10] Teng X., Liu H., Huang C., Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics, Materials Science and Engineering: A 2007, 452, 545-551.
  • [11] Kuo M., Tsai C., Huang J., Chen M., PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates, Materials Chemistry and Physics 2005, 90(1), 185-195.
  • [12] Lin Q., Yang G., Liu J., Application and mechanism principium research on nano-SiO_2/urea formaldehyde resin, Journal of Fujian College of Forestry 2005, 2.
  • [13] Devi R.R., Maji T.K., Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites, Wood Science and Technology 2012, 46(6), 1151-1168.
  • [14] Hsu Y.G., Lin F.J., Organic-inorganic composite materials from acrylonitrile-butadiene-styrene copolymers (ABS) and silica through an in situ sol‐gel process, Journal of Applied Polymer Science 2000, 75(2), 275-283.
  • [15] Myers R.H., Montgomery D.C., Anderson-Cook C.M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, 2016.
  • [16] Rajakumar S., Muralidharan C., Balasubramanian V., Response surfaces and sensitivity analysis for friction stir welded AA6061-T6 aluminium alloy joints, International Journal of Manufacturing Research 2011, 6(3), 215-235.
  • [17] Ding C., Jia D., He H., Guo B., Hong H., How organo-montmorillonite truly affects the structure and properties of polypropylene, Polymer Testing 2005, 24(1), 94-100.
  • [18] Rajakumar S., Muralidharan C., Balasubramanian V., Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T 6 aluminium alloy joints, Materials & Design 2011, 32(5), 2878-2890.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f99f0ffc-aeb0-4e6c-9fbc-8d60f926a617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.