PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of annealing on the microstructure and properties of IN 625 specimens manufactured by selective laser melting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study examines the effect of the annealing on the microstructure, tensile strength (small flat dog-bone specimen size with 5 mm dimension of measuring base) and corrosion resistance of IN 625 nickel superalloy specimens manufactured by means of selective laser melting method (SLM). The annealing of such specimens was carried out in a chamber furnace in a protective atmosphere of argon at a temperature of 1038 °C for 1 h. The cooling process was carried out in an atmosphere of air at ambient temperature. The microstructure of the IN 625 nickel superalloy after the 3D printing process and after the post-process heat treatment (HT) was examined by means of scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The results showed a uniform microstructure after the SLM process with element microsegregation. The cooling rate in the heat treatment was not sufficient which caused precipitation at the grain boundaries, most probably carbides and resulted in only a partial increase in ductility much lower than that of the material in initial state despite the high temperature applied during the annealing. The strength in the HT was on a level comparable to as-build state, 852 MPa and 891 MPa, respectively. Additional corrosion resistance tests were performed by the potentiodynamic method in a 3.5% NaCl solution at room temperature. HT increased the current density variation from ipass due to the formed precipitates. Our studies show that the size effect is an important factor when assessing the properties of IN 625 obtained using SLM. Despite similar microstructure, the structure defects play a more significant role which translates into lower mechanical properties than in normal sized specimens defined by the standard ASTM E8.
Rocznik
Strony
art. no. e207, 2022
Opis fizyczny
Bibliogr. 57 poz., rys., wykr.
Twórcy
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
  • National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str., 02-507 Warsaw, Poland
Bibliografia
  • [1] Maj P, Koralnik M, Adamczyk-Cieslak B, Romelczyk-Baishya B, Kut S, Pieja T, Mrugala T, Mizera J. Mechanical properties and microstructure of Inconel 625 cylinders used in aerospace industry subjected to flow forming with laser and standard heat treatment. Int J Mater Form. 2019;12:135–44. https://doi.org/10.1007/s12289-018-1413-8.
  • [2] Yadav M, Misra A, Malhotra A, Kumar N. Design and analysis of a high-pressure turbine blade in a jet engine using advanced materials. Mater Today Proc. 2020;25:639–45. https://doi.org/10.1016/j.matpr.2019.07.530.
  • [3] Eiselstein HL, Tillack DJ. The invention and definition of alloy 625. In: Loria EA (ed) Superalloys 718, 625 Var. Deriv., TMS, 1991: pp. 1–14.
  • [4] Mostafaei A, Stevens EL, Hughes ET, Biery SD, Hilla C, Chmielus M. Powder bed binder jet printed alloy 625: densification, microstructure and mechanical properties. Mater Des. 2016;108:126–35. https://doi.org/10.1016/j.matdes.2016.06.067.
  • [5] Floreen S, Fuchs G, Yang WJ. The metallurgy of alloy-625. In: Loria EA (ed) Superalloys 718, 625 Var. Deriv., TMS, 1994; pp 13–37.
  • [6] Shoemaker LW. Alloys 625 and 718: trends in properties and applications. In: Loria EA (ed) Superalloys 718, 625, 706 Deriv., TMS, 2005: pp. 409–418.
  • [7] Ban S. Corrosion resistance of Inconel 625 overlay welded inside pipes as a function of heat treatment temperature. Int J Electro-chem Sci. 2016;11:7764–74. https://doi.org/10.20964/2016.09.22.
  • [8] Łyczkowska K, Michalska J. Studies on the corrosion resistance of laser-welded Inconel 600 and Inconel 625 nickel-based superalloys. Arch Metall Mater. 2017;62:653–6. https://doi.org/10.1515/amm-2017-0100.
  • [9] de Lorenzi MS, Nunes RM, Falcade T, Clarke T. Evaluation of the influence of surface finishing on the corrosion resistance of HVOF applied Inconel 625 coatings on steel. Mater Res. 2017. https://doi.org/10.1590/1980-5373-mr-2016-0844.
  • [10] Xu LY, Li M, Jing HY, Han YD. Electrochemical behavior of corrosion resistance of X65/Inconel 625 welded joints. Int J Electro-chem Sci 2013;8:2069–2079. www.electrochemsci.org accessed 26 Apr 2022.
  • [11] Koike R, Unotoro I, Kakinuma Y, Aoyama T, Oda Y, Kuriya T, Fujishima M. Evaluation for mechanical characteristics of Inconel625–SUS316L joint produced with direct energy deposition. Procedia Manuf. 2017;14:105–10. https://doi.org/10.1016/j.promfg.2017.11.012.
  • [12] Park I-C, Kim S-J. Corrosion behavior in seawater of arc thermal sprayed Inconel 625 coatings with sealing treatment. Surf Coat Technol. 2017;325:729–37. https:// doi. org/ 10. 1016/j. surfc oat.2017.03.009.
  • [13] Gamon A, Arrieta E, Gradl PR, Katsarelis C, Murr LE, Wicker RB, Medina F. Microstructure and hardness comparison of as-built inconel 625 alloy following various additive manufacturing processes. Results Mater. 2021;12: 100239. https://doi.org/10.1016/j.rinma.2021.100239.
  • [14] Marchese G, Parizia S, Rashidi M, Saboori A, Manfredi D, Ugues D, Lombardi M, Hryha E, Biamino S. The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion. Mater Sci Eng A. 2020;769: 138500. https://doi.org/10.1016/j.msea.2019.138500.
  • [15] Liu X, Fan J, Li K, Song Y, Liu D, Yuan R, Wang J, Tang B, Kou H, Li J. Serrated flow behavior and microstructure evolution of Inconel 625 superalloy during plane-strain compression with different strain rates. J Alloys Compd. 2021;881: 160648. https://doi.org/10.1016/j.jallcom.2021.160648.
  • [16] Zhang YC, Jiang W, Tu ST, Zhang XC, Ye YJ, Wang RZ. Experimental investigation and numerical prediction on creep crack growth behavior of the solution treated Inconel 625 superalloy. Eng Fract Mech. 2018;199:327–42. https://doi.org/10.1016/j.engfracmech.2018.05.048.
  • [17] Reed RC. The superalloys : fundamentals and applications. Cambridge University Press; 2006.
  • [18] Alvarães CP, Jorge JCF, de Souza LFG, Araújo LS, Mendes MC, Farneze HN. Microstructure and corrosion properties of single layer Inconel 625 weld cladding obtained by the electroslag welding process. J Mater Res Technol. 2020;9:16146–58. https://doi.org/10.1016/j.jmrt.2020.11.048.
  • [19] Henderson MB, Arrell D, Larsson R, Heobel M, Marchant G. Nickel based superalloy welding practices for industrial gas turbine applications. Sci Technol Weld Join. 2004;9:13–21. https://doi.org/10.1179/136217104225017099.
  • [20] Kreitcberg A, Brailovski V, Turenne S. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion. Mater Sci Eng A. 2017;689:1–10. https://doi.org/10.1016/j.msea.2017.02.038.
  • [21] Beese AM, Wang Z, Stoica AD, Ma D. Absence of dynamic strain aging in an additively manufactured nickel-base super-alloy. Nat Commun. 2018;9:2083. https:// doi. org/ 10. 1038/s41467-018-04473-5.
  • [22] Li X, Yi D, Liu B, Zhang J, Yang X, Wang C, Feng Y, Bai P, Liu Y, Qian M. Graphene-strengthened Inconel 625 alloy fabricated by selective laser melting. Mater Sci Eng A. 2020;798: 140099. https://doi.org/10.1016/j.msea.2020.140099.
  • [23] Tian Z, Zhang C, Wang D, Liu W, Fang X, Wellmann D, Zhao Y, Tian Y. A review on laser powder bed fusion of inconel 625 nickel-based alloy. Appl Sci. 2020;10:81. https://doi.org/10.3390/app10010081.
  • [24] Smith GD, Eisinger NC. The effect of niobium on the corrosion resistance of nickel - base alloys. In: Kim Y-W, Carneiro T (eds) Niobium high temp. Appl., TMS, 2004: pp. 23–34.
  • [25] Sitek R, Kaminski J, Mizera J. Corrosion resistance of the inconel 740H nickel alloy after pulse plasma nitriding at a frequency of 10kHz. Acta Phys Pol A. 2016;129:584–7. https://doi.org/10.12693/APhysPolA.129.584.
  • [26] Huang CA, Wang TH, Han WC, Lee CH. A study of the galvanic corrosion behavior of Inconel 718 after electron beam welding. Mater Chem Phys. 2007;104:293–300. https://doi.org/10.1016/j.matchemphys.2007.03.017.
  • [27] Cabrini M, Lorenzi S, Testa C, Pastore T, Brevi F, Biamino S, Fino P, Manfredi D, Marchese G, Calignano F, Scenini F. Evaluation of corrosion resistance of alloy 625 obtained by laser powder bed fusion. J Electrochem Soc. 2019;166:C3399–408. https://doi.org/10.1149/2.0471911jes.
  • [28] Arzt E. Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 1998;46:5611–26. https:// doi. org/ 10. 1016/ S1359- 6454(98)00231-6.
  • [29] Mullins W. The effect of thermal grooving on grain boundary motion. Acta Metall. 1958;6:414–27. https:// doi. org/ 10. 1016/0001-6160(58)90020-8.
  • [30] Dunstan DJ, Bushby AJ. Grain size dependence of the strength of metals: the Hall-Petch effect does not scale as the inverse square root of grain size. Int J Plast. 2014;53:56–65. https://doi.org/10.1016/j.ijplas.2013.07.004.
  • [31] Tucho WM, Hansen V. Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments. J Mater Sci. 2019;54:823–39. https://doi.org/10.1007/s10853-018-2851-x.
  • [32] Molak RM, Paradowski K, Brynk T, Ciupinski L, Pakiela Z, Kurzydlowski KJ. Measurement of mechanical properties in a 316L stainless steel welded joint. Int J Press Vessel Pip. 2009;86:43–7.https://doi.org/10.1016/j.ijpvp.2008.11.002.
  • [33] Wysocki B, Maj P, Krawczyńska A, Rożniatowski K, Zdunek J, Kurzydłowski KJ, Święszkowski W. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM). J Mater Process Technol. 2017;241:13–23. https://doi.org/10.1016/j.jmatprotec.2016.10.022.
  • [34] Molak RM, Kartal ME, Pakiela Z, Kurzydlowski KJ. The effect of specimen size and surface conditions on the local mechanical properties of 14MoV6 ferritic–pearlitic steel. Mater Sci Eng A. 2016;651:810–21. https://doi.org/10.1016/j.msea.2015.11.037.
  • [35] Duan Z, Man C, Dong C, Cui Z, Kong D, Wang L, Wang X. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: pitting mechanism induced by gas pores. Corros Sci. 2020;167: 108520. https://doi.org/10.1016/j.corsci.2020.108520.
  • [36] Chen T-C, Chou C-C, Yung T-Y, Cai R-F, Huang J-Y, Yang Y-C. A comparative study on the tribological behavior of various thermally sprayed Inconel 625 coatings in a saline solution and deionized water. Surf Coatings Technol. 2020;385: 125442. https://doi.org/10.1016/j.surfcoat.2020.125442.
  • [37] Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf. 2017;14:39–48. https://doi.org/10.1016/j.addma.2016.12.001.
  • [38] Poulin J-R, Kreitcberg A, Terriault P, Brailovski V. Long fatigue crack propagation behavior of laser powder bed-fused inconel 625 with intentionally-seeded porosity. Int J Fatigue. 2019;127:144–56. https://doi.org/10.1016/j.ijfatigue.2019.06.008.
  • [39] Junker D, Hentschel O, Schmidt M, Merklein M. Investigation of heat treatment strategies for additively-manufactured tools of X37CrMoV5-1. Metals (Basel). 2018;8:1–13. https://doi.org/10.3390/met8100854.
  • [40] Popovich VA, Borisov EV, Popovich AA, Sufiiarov VS, Masaylo DV, Alzina L. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des. 2017;131:12–22. https://doi.org/10.1016/j.matdes.2017.05.065.
  • [41] Tinoco J, Fredriksson H. Solidification of a modified inconel 625 alloy under different cooling rates. High Temp Mater Process. 2004;23:13–24. https://doi.org/10.1515/HTMP.2004.23.1.13.
  • [42] Li C, White R, Fang XY, Weaver M, Guo YB. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater Sci Eng A. 2017;705:20–31. https://doi.org/10.1016/j.msea.2017.08.058.
  • [43] Li S, Wei Q, Shi Y, Zhu Z, Zhang D. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J Mater Sci Technol. 2015;31:946–52. https://doi.org/10.1016/j.jmst.2014.09.020.
  • [44] Marchese G, Aversa A, Bassini E. Microstructure and hardness evolution of solution annealed inconel 625/TiC composite processed by laser powder bed fusion. Metals (Basel). 2021;11:929. https://doi.org/10.3390/met11060929.
  • [45] Kok Y, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des. 2018;139:565–86. https://doi.org/10.1016/j.matdes.2017.11.021.
  • [46] Sergueeva AV, Zhou J, Meacham BE, Branagan DJ. Gage length and sample size effect on measured properties during tensile testing. Mater Sci Eng A. 2009;526:79–83. https://doi.org/10.1016/j.msea.2009.07.046.
  • [47] Marchese G, Lorusso M, Parizia S, Bassini E, Lee J-W, Calignano F, Manfredi D, Terner M, Hong H-U, Ugues D, Lombardi M, Biamino S. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater Sci Eng A. 2018;729:64–75. https://doi.org/10.1016/j.msea.2018.05.044.
  • [48] Todaro CJ, Easton MA, Qiu D, Zhang D, Bermingham MJ, Lui EW, Brandt M, Stjohn DH, Qian M. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-13874-z.
  • [49] Oerlikon, Additive manufacturing 625 Nickel Alloy, 1900.
  • [50] Sitek R, Molak R, Zdunek J, Bazarnik P, Wiśniewski P, Kubiak K, Mizera J. Influence of an aluminizing process on the microstructure and tensile strength of the nickel superalloy IN 718 produced by the selective laser melting. Vacuum. 2021;186: 110041. https://doi.org/10.1016/j.vacuum.2020.110041.
  • [51] Szustecki M, Zrodowski L, Sitek R, Cygan R, Pakiela Z, Mizera J. Microstructure and properties of IN 718 nickel-based superalloy manufactured by means of selective laser melting method. Adv Appl Plasma Sci. 2017;11:9–12.
  • [52] Amato K, Hernandez J, Murr L, Martinez E, Gaytan S, Shindo P, Collins S. Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron beam melting. J Mater Sci Res. 2012;1(2):3. https://doi.org/10.5539/jmsr.v1n2p3.
  • [53] Frankel GS. Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc. 1998;145:2186–98. https://doi.org/10.1149/1.1838615.
  • [54] Wong H, Dawson K, Ravi GA, Howlett L, Jones RO, Sutcliffe CJ. Multi-laser powder bed fusion benchmarking—initial trials with inconel 625. Int J Adv Manuf Technol. 2019;105:2891–906. https://doi.org/10.1007/s00170-019-04417-3.
  • [55] Marchese G, Bassini E, Parizia S, Manfredi D, Ugues D, Lombardi M, Fino P, Biamino S. Role of the chemical homogenization on the microstructural and mechanical evolution of prolonged heat-treated laser powder bed fused Inconel 625. Mater Sci Eng A. 2020;796: 140007. https://doi.org/10.1016/j.msea.2020.140007.
  • [56] Nguejio J, Szmytka F, Hallais S, Tanguy A, Nardone S, Godino-Martinez M. Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625. Mater Sci Eng A. 2019;764:138214. https:// doi. org/ 10.1016/j.msea.2019.138214.
  • [57] Chen L, Sun Y, Li L, Ren X. Microstructural evolution and mechanical properties of selective laser melted a nickel-based superalloy after post treatment. Mater Sci Eng A. 2020;792:139649. https://doi.org/10.1016/j.msea.2020.139649.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f99c68bf-965f-4c28-85f5-ebcb39d31e82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.