PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Video key frame detection based on the restricted Boltzmann machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present a new method for key frame detection. Our approach is based on a well-known algorithm of the Restricted Boltzmann Machine (RBM), which is a pivotal step in our method. The frames are compared to the RBM matcher, which allows one to search for key frame in the video sequence. The Restricted Boltzmann Machine is one of sophisticated types of neural networks, which can process the probability distribution, and is applied to filtering image recognition and modelling. The learning procedure is based on the matrix description of RBM, where the learning samples are grouped into packages, and represented as matrices. Our research confirms a potential usefulness for video key frame detection. The proposed method provides better results for professional and high-resolution videos. The simulations we conducted proved the effectiveness of our approach. The algorithm requires only one input parameter.
Rocznik
Strony
49--58
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Institute of Computational Intelligence Czestochowa University of Technology Częstochowa, Poland
  • Institute of Computational Intelligence Czestochowa University of Technology Częstochowa, Poland
  • Institute of Computational Intelligence Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Rutkowski L., Jaworski M., Pietruczuk L., Duda P., Decision trees for mining data streams based on the Gaussian approximation, IEEE Transactions on Knowledge and Data Engineering 2014, 26(1), 108-119.
  • [2] Rutkowski L., Pietruczuk L., Duda P., Jaworski M., Decision trees for mining data streams based on the Mcdiarmid’s bound, IEEE Transactions on Knowledge and Data Engineering 2013, 25(6), 1272-1279.
  • [3] Seeling P., Scene change detection for uncompressed video, [in:] Technological Developments in Education and Automation, Springer Netherlands, 2010, 11-14.
  • [4] Xinying Wang, Zhengke Weng, Scene abrupt change detection, [in:] Canadian Conference on Electrical and Computer Engineering 2000, 2, 880-883.
  • [5] Gentao Liu, Xiangming Wen, Wei Zheng, Peizhou He, Shot boundary detection and keyframe extraction based on scale invariant feature transform, [in:] Eighth IEEE/ACIS International Conference on Computer and Information Science, ICIS 2009, 1126-1130.
  • [6] Cierniak R., Knop M., Video compression algorithm based on neural networks, [in:] Artificial Intelligence and Soft Computing, volume 7894 of Lecture Notes in Computer Science, Springer, Berlin - Heidelberg 2013, 524-531.
  • [7] Knop M., Cierniak R., Shah N., Video compression algorithm based on neural network structures, [in:] Artificial Intelligence and Soft Computing, volume 8467 of Lecture Notes in Computer Science, Springer International Publishing, 2014, 715-724.
  • [8] Grycuk R., Knop M., Mandal S., Video key frame detection based on surf algorithm, [in:] Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Springer, Berlin - Heidelberg 2015, 572-583.
  • [9] Knop M., Dobosz P., Neural video compression algorithm, [in:] Image Processing and Communications Challenges 6, volume 313 of Advances in Intelligent Systems and Computing, Springer International Publishing, 2015, 59-66.
  • [10] Zhong Qu, Lidan Lin, Tengfei Gao, Yongkun Wang, An improved keyframe extraction method based on HSV colour space, Journal of Software 2013, 8(7).
  • [11] Bay H., Tuytelaars T., Van Gool L., Surf: Speeded up robust features, [in:] Computer VisionECCV 2006, Springer 2006, 404-417.
  • [12] Bay H., Ess A., Tuytelaars T., Van Gool L., Speeded-up robust features (SURF), Computer Vision and Image Understanding 2008, 110(3), 346-359.
  • [13] Lowe D.G., Object recognition from local scale-invariant features, [in:] The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, 2, 1150-1157.
  • [14] Lowe D.G., Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision 2004, 60(2), 91-110.
  • [15] Grycuk R., Gabryel M., Korytkowski M., Scherer R., Voloshynovskiy S., From single image to list of objects based on edge and blob detection, [in:] Artificial Intelligence and Soft Computing, volume 8468 of Lecture Notes in Computer Science, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada eds., Springer International Publishing, 2014, 605-615.
  • [16] Grycuk R., Gabryel M., Korytkowski M., Scherer R., Content-based image indexing by data clustering and inverse document frequency, [in:] Beyond Databases, Architectures, and Structures, volume 424 of Communications in Computer and Information Science, S. Kozielski, D. Mrozek, P. Kasprowski, B. Małysiak-Mrozek, D. Kostrzewa eds., Springer International Publishing, 2014, 374-383.
  • [17] Le Roux N., Bengio Y., Representational power of restricted boltzmann machines and deep belief networks, Neural Computation 2008, 20(6),1631-1649.
  • [18] Hinton G., Training products of experts by minimizing contrastive divergence, Neural Computation 2002, 14(8), 1771-1800.
  • [19] Hinton G., A practical guide to training restricted Boltzmann machines, Momentum 2010, 9(1), 926.
  • [20] Karpathy A., Cpsc 540 project: Restricted Boltzmann machines.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9960244-893a-4b8c-bbe1-bccb5afdffde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.