PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Możliwości zastosowania grzybów w technologiach oczyszczania i remediacji wybranych elementów środowiska

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Possible applications of fungi in purification and environmental remediation technologies
Języki publikacji
PL
Abstrakty
PL
Grzyby wykazują wiele cech przydatnych w inżynierii środowiska, dających im przewagę nad bakteriami. Udowodniono, że potrafią one rozkładać wiele skomplikowanych związków organicznych, także ksenobiotyków, takich jak trudnobiodegradowalne wielopierścieniowe związki aromatyczne, polichlorowane węglowodory, dioksyny, pestycydy oraz pozostałości materiałów wybuchowych. Ważną rolę w naturalnej regulacji liczebności populacji roślin odgrywają pasożytnicze gatunki grzybów, a gatunki symbiotyczne są niezbędne do prawidłowego rozwoju i wzrostu wielu gatunków roślin. Ich różnorodność taksonomiczna, genetyczna i funkcjonalna jest ogromna i stanowi obszerne źródło organizmów użytecznych w procesie bioremediacji. W dokonanym przeglądzie piśmiennictwa wykazano, że różne gatunki grzybów mogą znaleźć zastosowanie w remediacji środowiska gruntowo-wodnego oraz w oczyszczaniu ścieków i gazów odlotowych. Jednakże dotychczasowe badania nad wykorzystaniem grzybów najczęściej były prowadzone w skali laboratoryjnej. Eksperymenty w skali półtechnicznej i polowej wykazały, że na obecnym etapie praktyczne wykorzystanie grzybów w systemach inżynierii środowiska nie jest ekonomicznie uzasadnione. Problemem, który wymaga rozwiązania jest utrzymanie dominacji szczepów grzybów o wysokiej aktywności degradacyjnej w otwartych układach oczyszczających w warunkach konkurencji ze strony mikroorganizmów autochtonicznych. Duże nadzieje wiąże się z jednoczesnym wykorzystaniem w układach oczyszczania środowiska grzybów i bakterii, których skuteczność biodegradacyjna może się wzajemnie uzupełniać. Aby w pełni wykorzystać specyficzne walory grzybów niezbędne są badania przesiewowe w celu izolacji szczepów o szerszych zdolnościach metabolicznych, a także udoskonalanie szczepów metodami in vitro. Podobnie przyszłościowe jest wykorzystanie w bioremediacji immobilizowanych enzymów grzybowych. Rozwój technik molekularnych pozwoli na zmniejszenie nadal jeszcze wysokich kosztów wytwarzania, oczyszczenia i immobilizacji enzymów na odpowiednich nośnikach.
EN
Fungi possess many features useful to environmental engineering, which gives them an advantage over bacteria. Their ability to decompose many complex organic compounds, including xenobiotics, such as difficult to biodegrade polycyclic aromatic compounds, polychlorinated hydrocarbons, dioxins, pesticides and explosive residues has been documented. Parasitic fungi species play an important role as natural regulators of plant population size, while symbiotic species are essential to proper development and growth of many plant species. The enormous taxonomic, genetic and functional diversity of fungi constitutes a rich source of organisms useful in bioremediation process. The literature review demonstrated that various types of fungi could be employed in remediation of soil-water environment as well as in treatment of wastewater and waste gases. However, most often current studies on fungal applications are carried out on a laboratory scale. At the current stage, as demonstrated by semi-technical and field-scale experiments, practical use of fungi in environmental engineering systems is not economically justified. Maintenance of dominance of fungal strains with high degradation activity in open purification systems in competition with indigenous microorganisms remains an open problem. Great promises are held out for simultaneous use of fungal and bacterial environments in treatment systems, as their biodegradation effectiveness may complement each other. Improvement of strains by the in vitro methods and screening tests to isolate strains with broader metabolic abilities are necessary in order to take full advantage of the specific benefits of fungi. Similarly, use of immobilized fungal enzymes in bioremediation offers good prospects for the future. Development of molecular techniques will allow for reduction of persistently high costs of enzyme production, purification and immobilization on appropriate carriers.
Czasopismo
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 140 poz., rys., tab.
Twórcy
autor
  • Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Oddział Dolnośląski, ul. Józefa Piłsudskiego 74, 50-020 Wrocław
autor
  • Politechnika Wrocławska, Wydział Inżynierii Środowiska, Zakład Biologii Sanitarnej i Ekotechniki, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
  • Politechnika Wrocławska, Wydział Inżynierii Środowiska, Katedra Technologii Oczyszczania Wody i Ścieków, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • 1. B. T. HASSETT, R. GRADINGER: Chytrids dominate arc-tic marine fungal communities. Environmental Microbiology 2016, Vol. 18, No. 6, pp. 2001–2009.
  • 2. R. D. FINLAY: Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 2008, Vol. 59, No. 5, pp. 1115–1126.
  • 3. C. R. WOESE, O. KANDLER, M. L. WHEELIS: Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA 1990, Vol. 87, pp. 4576–4579.
  • 4. L. V. CARRERA: Two ex situ fungal technologies to treat contaminated soil. Academic dissertation, University of Helsinki, Faculty of Agriculture and Foresty, Helsinki 2010.
  • 5. C. J. RHODES: Mycoremediation (bioremediation with fun-gi) – growing mushrooms to clean the earth. Chemical Speciation & Bioavailability 2014, Vol. 26, No. 3, pp. 196–198.
  • 6. R. THENMOZHI, K. ARUMUGAM, A. NAGASATHYA, N. THAJUDDIN, A. PENEERSELVAM: Studies on mycoremediation of used engine oil contaminated soil samples. Advanced in Applied Science Research 2013, Vol. 4, No. 2, pp. 110–118.
  • 7. M. TIEN, T. K. KIRK: Lignin-degrading enzyme from Hymenomycete Phanerochaete chrysosporium Burds. Science 1983, Vol. 21, No. 4611, pp. 661–663.
  • 8. K. WLIZŁO, J. POLAK, A. JAROSZ-WILKOŁAZKA: Lakaza – niebieski enzym dla kolorowej biotechnologii. W: K. KROPIWIEC, M. SZALA [red.]: Biotechnologia w analizie, ochronie środowiska, medycynie i przemyśle, Fundacja TYGIEL, Lublin 2015, ss. 178–196.
  • 9. C. A. REDDY, Z. MATHEW: Bioremediation potential of white rot fungi. In: G. M. GADD [Ed.]: Fungi in Bioremediation, Cambridge University Press, Cambridge 2001.
  • 10. F. X. PRENAFETA-BOLDU, R. SUMMERBELL, G. SYB-REN de HOOG: Fungi growing on aromatic hydrocarbons: Biotechnology’s unexpected encounter with biohazard? FEMS Microbiology Reviews 2006, Vol. 30, No. 1, pp. 109–30.
  • 11. C. HOU, G. MA: Performance experiment on aerobic biodegradation of benzene, toluene and xylene by fungus Trichoderma viride Pers. ex Fr. Huanjing Gongcheng 2007, Vol. 25, No. 3, pp. 45–47.
  • 12. G. VIGUERAS, K. SHIRAI, D. MARTINS, T. T. FRANCO, L. F. FLEURI, S. REVAH: Toluene gas phase biofiltration by Paecilomyces lilacinus and isolation and identification of a hydrophobic protein produced thereof. Applied Microbiology and Biotechnology 2008, Vol. 80, No. 1, pp. 147–154.
  • 13. J. NOWAK: Bioremediacja gleb z ropy i jej produktów. Biotechnologia 2008, nr 1, ss. 97–108.
  • 14. D. GHOSAL, S. GHOSH, T. K. DUTTA, Y. AHN: Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology 2016, Vol. 7, Art. 1369.
  • 15. P. SANYAL, P. SAMADDAR, A. K. PAUL: Degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hy-droxyvalerate) by some soil Aspergillus spp. Journal Polymers and the Environment 2006, Vol. 14, No. 3, pp. 257–263.
  • 16. M. MATSUBARA, J. M. LYNCH, F. A. A. M. de LEIJ: A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme Microbial Technology 2006, Vol. 39, No. 7, pp. 1365–1372.
  • 17. S. RODRIGUES-COUTO: Industrial and environmental application of white-rot fungi. Mycosphere 2017, Vol. 8, No. 3, pp. 456–466.
  • 18. A. HUSAINI, H. A. ROSLAN, K. S. Y. HII, C. H. ANG: Bio-degradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology 2008, Vol. 24, No. 12, pp. 2789–2797.
  • 19. T. HADIBARATA, S. TACHIBANA, K. ITOH: Biodegradation of neicosane by fungi screened from nature. Pakistan Journal of Biological Sciences 2007, Vol. 10, No. 11, pp. 1804–1810.
  • 20. J. ZABIELSKA-MATEJUK, K. CZACZYK: Biodegradation of new quaternary ammonium compounds in treated wood by mould fungi. Wood Science and Technology 2006, Vol. 40, pp. 461–475.
  • 21. N. TISO, J. MIKASAUSKAITE, M. STANKEVICIUS, V. SNIESKIENE, A. STANKEVICIENE, C. POLCARO, E. GALLI, E. DONATI, M. ZACCHINI, D. LEVIŠAUSKAS, T. TEKORIUS, O. RAGAŽINSKIENĖ, T. DREVINSKAS, V. BARTKUVIENĖ, O. KORNYŠOVA, V. KAŠKONIENĖ, A. MARUŠKA: Isolation and identification of fungi tolerant to polycyclic aromatic hydrocarbons and coal tar from different habitats in Lithuania. Toxicological and Environmental Chemistry 2015, Vol. 98, No. 1, pp. 77–89.
  • 22. G. CHENG, P. LI: Phytoremediation and microbial remediation of petroleum contaminated soil. Chinese Journal of Environmental Engineering 2007, Vol. 7, No. 6, pp. 91–96.
  • 23. S. LI, F. LI, Z. ZHANG, Y. LUO, S. YANG, B. WEI: In-situ remediation of microorganisms in frozen and thawed petroleum-contaminated soil from Liaohe Oil Field, Liaoning Province. Journal of Liaoning Technical University 2008, Vol. 27, No. 4, pp. 599–601.
  • 24. S. Y. KASUMOVA, I. BABAEVA: Several physiological and biochemical properties of naphthalan petroleum fungi-destructors. Biologiya Elmlari 2007, Vol. 5–6, pp. 123–128.
  • 25. S. Y. KASUMOVA: Culturing micromycetes on the medium with naphtalan petroleum. Biologiya Elmlari 2005, Vol. 3–4, pp. 154–160.
  • 26. Y.-Q. LI, H.-F. LIU, Z.-L. TIAN, L.-H ZHU, Y.-H. WU, H.-Q. TANG: Diesel pollution biodegradation: Synergetic effect of Mycobacterium and filamentous fungi. Biomedical and Environmental Science 2008, Vol. 27, No. 3, pp. 181–187.
  • 27. M. ROBAK, T. BORUCZKOWSKI, W. DROŻDŻ, Z. LA-ZAR, M. BARANOWSKA, D. PRZĄDO, M. STEININGER: Zastosowanie drożdży Yarrowia lipolytica do bioremediacji gruntu zanieczyszczonego olejem kreozotowym (Application of the yeasts Yarrowia lipolytica for in-situ bioremediation of soil contaminated with creosote oil – a case study). Ochrona Środowiska 2011, vol. 33, nr 2, ss. 27–33.
  • 28. T. FERREIRA, D. AZEVEDO, M. A. COELHO, M. H. RO-CHA-LEÃO: The crude oil degrading potential of Yarrowia lipolytica. New Biotechnology 2009, Vol. 25, pp. S80–S81.
  • 29. O. RUBILAR, G. FEIJOO, M. C. DIEZ, T. A. LU-CHAU, M. T. MOREIRA, J. M. LEMA: Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Industrial & Engineering Chemistry Research 2007, Vol. 46, No. 21, pp. 6744–6751.
  • 30. B. ZENG, D. L. NING, H. WANG: Preliminary study on bio-degradation of pentachlorophenol by white-rot fungus. Huanjing Huaxue (Environmental Chemistry) 2008, Vol. 27, No. 2, pp. 181–185.
  • 31. C. I. FORD, M. WALTER, G. L. NORTHCOTT, H. J. DI, K. C. CAMERON, T. TROWER: Fungal inoculum proper-ties: Extracellular enzyme expression and pentachlorophenol removal by New Zealand Trametes species in contaminated field soils. Journal Environmental Quality 2007, Vol. 36, No. 6, pp. 1749–1759.
  • 32. R. SZEWCZYK, J. DŁUGOŃSKI: Mikrobiologiczny rozkład pentachlorofenolu. Biotechnologia 2007, nr 1(76), ss. 121–134.
  • 33. E. MARCO-URREA, X. GABARRELL, M. SARRA, G. CAMINAL, T. VICENT, C.A. REDDY: Novel aerobic perchloroethylene degradation by the white-rot fungus Trametes versicolor. Environmental Science & Technology 2006, Vol. 40, No. 24, pp. 7796–7802.
  • 34. E. MARCO-URREA, G. CAMINAL, X. GABARRELL, T. VICENT, C. A. REDDY: Aerobic degradation/mineralization of trichloroethylene and perchloroethylene by white-rot fungi. Proceedings of the 9th International In Situ and On-Site Bioremediation Symposium, Baltimore (Maryland, USA) 2007, pp. H44/1–H44/6.
  • 35. J. C. QUINTERO, T. A. LU-CHAU, M. T. MOREIRA, G. FEIJOO, J. M. LEMA: Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. International Biodeterioration & Biodegradation 2007, Vol. 60, No. 4, pp. 319–326.
  • 36. I. KAMEI, S. SONOKI, K. HARAGUCHI, R. KONDO: Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Applied Microbiology and Biotechnology 2006, Vol. 73, No. 4, pp. 932–940.
  • 37. I. KAMEI, R. KOGURA, R. KONDO: Metabolism of 4,4’-di-chlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Applied Microbiology and Biotechnology 2006, Vol. 72, No. 3, pp. 566–575.
  • 38. I. KAMEI, R. KONDO: Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Applied Microbiology and Biotechnology 2005, Vol. 68, No. 4, pp. 560–566.
  • 39. M. C. ROMERO, E. HAMMER, R. HANSCHKE, A. M. AR-AMBARRI, F. SCHAUER: Biotransformation of biphenyl by the filamentous fungus Talaromyces helicus. World Journal of Microbiology and Biotechnology 2005, Vol. 27, No. 2, pp. 101–106.
  • 40. M. MONRROY, J. FREER, J. BAEZA, J. RODRIGUEZ: Degradation of tribromophenol by wood-rot fungi and Hamilton system. Electronic Journal of Biotechnology 2006, Vol. 9, No. 3, pp. 253–257.
  • 41. T. S. BHALERAO, P. R. PURANIK: Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. International Biodeterioration & Biodegradation 2007, Vol. 59, No. 4, pp. 315–321.
  • 42. V. NAGPAL, M. C. SRINIVASAN, K. M. PAKNIKAR: Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian Journal of Microbiology 2008, Vol. 48, No. 1, pp. 134–141.
  • 43. S. K. M. HOSSAIN, N. ANANTHARAMAN: Studies on aerobic biodegradation of DDT using Phanerochaete chrysosporium. Indian Journal of Environmental Protection 2005, Vol. 25, No. 5, pp. 454–457.
  • 44. A. S. PURNOMO, I. KAMEI, R. KONDO: Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. Journal of Bioscience and Bioengineering 2008, Vol. 105, No. 6, pp. 614–621.
  • 45. C. O. MARTINEZ, C. M. MAGANHOTTO de SOUZA SIL-VA, E .F. FAY, R. B. ABAKERLI, A. de HOLANDA NUNES MAIA, L. R. DURRANT: The effects of moisture and temperature on the degradation of sulfentrazone. Geoderma 2008, Vol. 747, No. 1–2, pp. 56–62.
  • 46. A. A. ROMEH: Adsorption and biodegradation of the herbicide fluometuron in liquid media. Journal of Environmental Research 2006, Vol. 7, pp. 29–47.
  • 47. I. KAMEI, R. KONDO: Simultaneous degradation of commercially produced CNP herbicide and of contaminated dioxin by treatment using the white-rot fungus Phlebia brevispora. Chemosphere 2006, Vol. 65, No. 7, pp. 1221–1227.
  • 48. M. SŁABA, M. A. PIĄTEK, J. DŁUGOŃSKI: Degradacja alachloru przez mikroskopowy grzyb strzępkowy Paecilomyces marquandii w warunkach niedoboru tlenu i zróżnicowanego zasolenia. Ochrona Środowiska i Zasobów Naturalnych 2011, vol. 48, ss. 104–111.
  • 49. D. GAO, L. DU, J. YANG, W. M. WU, H. LIANG: A critical review on the application of white rot fungus to environmental pollution control. Critical Reviews in Biotechnology 2010, Vol. 30, pp. 70–77.
  • 50. A. M. ZIGANSHIN, R. GERLACH, T. BORCH, A. V. NAU-MOV, R. P. NAUMOVA: Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Applied and Environmental Microbiology 2007, Vol. 73, pp. 7898–7905.
  • 51. C. E. CERNIGLIA, J. J. PERRY: Crude oil degradation by microorganisms isolated from marine environment. Journal of Basic Microbiology 1973, Vol. 13, No. 4, pp. 299–306.
  • 52. W. PRZYSTAŚ, E. ZABŁOCKA-GODLEWSKA: Screening basidiomycetes fungi possible to use in decolorization of RBBR dye. Archives of Waste Management and Environmental Protection 2016, Vol. 18, No. 4, pp. 1–8.
  • 53. A. W. TAYLOR, P. E. STAMETS: Implementing Fungal Cultivation in biofiltration Systems – The Past, Present, and Future of Mycofiltration. USDA Forest Service Proceeding 2014, RMRS-P-72.
  • 54. B. C. OKEKE, A. PATERSON, J. E. SMITH, I. A. WATSON-CRAIK: Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Applied Microbiology and Biotechnology 1997, Vol. 48, pp. 211–214.
  • 55. H. SINGH: Mycoremediation: Fungal Bioremediation. John Wiley & Sons. Inc., New Jersey 2006.
  • 56. L. LAUNEN, L. PINTO, C. WIEBE, E. KIEHLMAN, M. MOORE: The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Canadian Journal of Microbiology 1995, Vol. 41, pp. 477–488.
  • 57. A. ANASTASI, V. TIGINI, G. C. VARESE: The bioremediation potential of different ecophysiological groups of fungi. In: E. M. GOLTAPEH, Y. R. DANESH, A. VARMA [Eds.]: Fungi as Bioremediators, Soil Biology 32, Springer-Verlag, Berlin-Heidelberg 2013, pp. 29–49.
  • 58. N. MAGAN, S. FRAGOEIRO, C. BASTOS: Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 2010, Vol. 38, No. 4, pp. 238–248.
  • 59. F. ANASONYE. E. WINQUIST, M. RASANEN, J. KON-TRO, K. BJORKLOF, G. VASILYEVA, K. S. JORGENSEN, K. T. STEFFEN, M. TUOMELA, Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation 2015, Vol. 105, pp. 7–12.
  • 60. M. GASECKA, K. DRZEWIECKA, J. STACHOWIAK, M. SIWULSKI, P. GOLINSKI, K. SOBIERALSKI, I. GOLAK: Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Scientarium Polonorum, Hortorum Cultus 2012, Vol. 11, No. 4, pp. 39–46.
  • 61. C. WANG, Y. DONG, W. SHI, H. XU: Application of spent mushroom (Lentinula edodes) substrate and acclimated se-wage sludge on the bioremediation of polycyclic aromatic hydrocarbon polluted soil. RSC Advances 2016, Vol. 6, No. 43, pp. 37274–37285.
  • 62. M. SUPREETH, N S. RAJU: Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi. Applied Microbiology and Biotechnology 2017, Vol. 101, No. 15, pp. 5961–5971.
  • 63. S .MASAPHY, Y. HENIS, D. LEVANON: Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Applied and Environmental Microbiology 1996, Vol. 62, pp. 3587–3593.
  • 64. K. TURNAU, A. JURKIEWICZ, B. GRZYBOWSKA: Rola mikoryzy w bioremediacji terenów zanieczyszczonych. Kosmos 2002, vol. 51, nr 2, ss. 185–194.
  • 65. A. GAŁĄZKA, K. GAWARYJAŁEK: Glomalina – glikoproteina glebowa produkowana przez grzyby mykoryzy arbuskularnej. Postępy Mikrobiologii 2015, t. 54, ss. 331–34.
  • 66. A. MAŁACHOWSKA-JUTSZ: Mikoryzacja roślin a efektywność remediacji gruntów zanieczyszczonych węglowodorami. Zeszyty Naukowe Politechniki Śląskiej 2008, nr 1782.
  • 67. K. MIKSCH, G. CEMA, E. FELIS, A. SOCHACKI: Nowoczesne techniki i technologie inżynierii środowiska. Rocznik Ochrona Środowiska 2015, vol. 15, ss. 833–857.
  • 68. S. REVAH, A. VERGARA-FERNANDES, S. HER-NANDES: Fungal biofiltration for the elimination of gaseous pollutants from air. In: A. L. LEITÃO [Ed.]: Mycofactories, Bentham Science Publishers Ltd., 2011, pp. 109–120.
  • 69. J. MAESTRE, X. GAMISANS, D. GABRIEL, J. LA-FUENTE: Fungal biofilters for toluene biofiltration: Evaluation of the performance with four packing materials under different operating conditions. Chemosphere 2007, Vol. 67, pp. 684–692.
  • 70. M. C. VEIGA, C. KENNES: Parameters affecting performance and modeling of biofilters treating alkylbenzene-polluted air. Applied Microbiology and Biotechnology 2001, Vol. 55, pp. 254–258.
  • 71. E. ESTEVES, M. C. VEIGA, C. KENNES: Fungal biodegradation of toluene in gas-phase biofilters. In: W. VERS-TRAETE [Ed.]: European Symposium on Environmental Biotechnology, Taylor & Francis Group, London 2004, pp. 337–340.
  • 72. E. I. GARCIA-PENA, S. HERNANDEZ, E. FAVELA-TOR-RES, R. AURIA, S. REVAH: Toluene biofiltration by the fungus Scedosporium apiospermum TBI. Biotechnology and Bioengineering 2001, Vol. 76, pp. 61–69.
  • 73. C. KENNES, M. C. VEIGA: Fungal biocatalysts in the biofiltration of VOC-polluted air. Journal of Biotechnology 2004, Vol. 113, pp. 305–319.
  • 74. A. VERGARA-FERNANDES, B. van HAAREN, S. RE-VAH: Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane. Biotechnology Letters 2006, Vol. 28, pp. 2011–2017.
  • 75. A. KENNES, M. C. VEIGA: Bioreactors for Waste Gas Treatment. Kluver, Dordrecht 2001.
  • 76. J. S. DEVINNY, M. A. DESHUSSES, T. S. WEBSTER: Bio-filtration for Air Pollution Control. CRC Press, Boca Raton 1999.
  • 77. A. VERGARA-FERNANDES, F. SCOTT, P. MORENO-CASAS, L. DIAZ-ROBLES, R. MUNOZ: Elucidating the key role of the fungal mycelium on the biodegradation of n-pentane as a model hydrophobic VOC. Chemosphere 2016, Vol. 157, pp. 89–96.
  • 78. Y. M. JIN, L. GUO, M. C. VEIGA, C. KENNES: Fungal bio-filtration of α-pinene: Effects of temperature, relative humidity, and transient loads. Biotechnology and Bioengineering 2007, Vol. 96, pp. 433–443.
  • 79. D. P. BARR, S. D. AUST: Mechanisms white rot fungi use to degrade pollutants. Environmental Science & Technology 1994, Vol. 28, No. 2,pp. 79A–87A.
  • 80. A. O. J. PRADO, J. A. MENDOZA, M. C. VEIGA, C. KEN-NES: Optimization of nutrient supply in a downflow gas-phase biofilter packed with an inert carrier. Applied Microbiology and Biotechnology 2002, Vol. 59, pp. 567–573.
  • 81. J. W. van GROENESTIJN, W. N. M. van HEININGEN, N. J. R. KRAAKMAN: Biofilters based on the action of fungi. Water Science and Technology 2001, Vol. 44, No. 9, pp. 227–232.
  • 82. J. O. SAUCEDO-LUCERO, G. QUIJANO, S. ARRIAGA, R. MUNOZ: Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit. Journal of Hazardous Materials 2014, Vol. 276, pp. 287–294.
  • 83. S. DETCHANAMURTHY, P. A. GOSTOMSKI: Metabolic uncouplers in environmental research: a critical review. Reviews in Chemical Engineering 2012, Vol. 28, pp. 309–317.
  • 84. Z. SHAREEFDEEN, B. HERNER, A. SINGH: Biotechnology for Odor Air Pollution Control. Springer, Berlin-Heidelberg-New York 2005.
  • 85. B. BINA, R. DEHGHANZADEH, H. POURMOGHADAS, A. KALANTARY, A. TORKIAN: Removal of styrene from waste gas stream using a biofilter. Journal of Research in Medical Sciences 2004, Vol. 6, pp. 280–288.
  • 86. Y. M. JIN, M. C. VEIGA, C. KENNES: Performance optimization of the fungal biodegradation of α-pinene in gas-phase biofilter. Process Biochemistry 2006, Vol. 41, No. 8, pp. 1722–1728.
  • 87. Y. S. OH, S. C. CHOI, Y. K. KIM: Degradation of gaseous BTX by biofiltration with Phanerochaete chrysosporium. Journal of Microbiology 1998, Vol. 36, pp. 34–38.
  • 88. H. JORIO, Y. JIN, H. ELMRINI, J. NIKIEMA, R. BRZEZ-INSKI, M. HEITZ: Treatment of VOCs in biofilters inoculated with fungi and microbial consortium. Environmental Technology 2009, Vol. 30, No. 5, pp. 477–485.
  • 89. C. WANG, J. Y. XI, H. Y. HU, X. H. WEN: Biodegradation of gaseous chlorobenzene by white-rot fungus Phanerochaete chrysosporium. Biomedical and Environmental Sciences 2008, Vol. 21, pp. 474–478.
  • 90. Y. S. OH, R. BARTHA: Design and performance of a trick-ling air biofilter for chlorobenzene and o-dichlorobenzene vapors. Applied and Environmental Microbiology 1994, Vol. 60, No. 8, pp. 2717–2722.
  • 91. C. KENNES, J. LEMA: Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium. Journal of Industrial Microbiology 1994, Vol. 13, No. 5, pp. 311–314.
  • 92. A. BRAUN-LULLEMANN, A. MAJCHERCZYK, N. TEB-BE, A. HUTTERMANN: Bioluftfilter auf der Basis von Weiẞfäulepilzen. In: A.J. DRAGT, J. van HAM [Eds.]: Bio-techniques for Air Pollution Abatement and Odour Control Policies, Elsevier, Amsterdam 1992, pp. 91–95.
  • 93. B. T. MOHAMMAD, E. R. RENE, M. C. VEIGA, C. KEN-NES: Performance of a thermophilic gasphase biofilter treating high BTEX loads under steady- and transient-state operation. International Biodeterioration and Biodegradation 2017, Vol. 119, pp. 289–298.
  • 94. S. ARIAGA, M. A. SERRANO, A. P. BARBA de la ROSA: Methanol vapor biofiltration coupled with continuous production of recombinant endochitinase Ech42 by Pi-chia pastoris. Process Biochemistry 2012, Vol. 47, No. 12, pp. 2311–2316.
  • 95. K. SKOŁUCKA-SZARY, P. RIESKE, S. PIASKOWSKI: Praktyczne aspekty zastosowania chityny i jej pochodnych w leczeniu raka. Chemik 2016, t. 70, nr 2, ss. 89–98.
  • 96. K. BARBUSIŃSKI, S. SALWICZEK, A. PASZEWSKA: The use of chitosan for removing selected pollutants from water and wastewater – short review. Architecture Civil Engineering Environment 2016, Vol. 9, No. 2, pp. 107–115.
  • 97. R. PALOMO-BRIONESET, A. P. B. de la ROSA, S. ARRIA-GA: Effect of operational parameters on methanol biofiltration coupled with Endochitinase 42 production. Biochemical Engineering Journal 2015, Vol. 100, pp. 9–15.
  • 98. J. NOWAK, B. GÓRNA, W. NOWAK: Wykorzystanie grzybów strzępkowych do biodegradacji ścieków z przemysłu ziemniaczanego z jednoczesną produkcją biomasy pleśniowej na cele paszowe. Żywność. Nauka. Technologia. Jakość 2013, nr 6(91), ss. 191–203.
  • 99. L. COULIBALY, G. GOURENE, N. S. AGATHOS: Utilization of fungi for biotreatment of raw wastewaters. African Journal of Biotechnology 2003, Vol. 2, No. 12, pp. 620–630.
  • 100. M. HULTBERG H. BODIN: Fungi-based treatment of brewery wastewater – biomass production and nutrient reduction. Applied Microbiology and Biotechnology 2017, Vol. 101, pp. 4791–4798.
  • 101. S. SAYADI, N. ALLOUCHE, M. JAOUA, F. ALOUI: Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochemistry 2000, Vol. 35, No. 7, pp. 725–735.
  • 102. N. ASSAS, L. MAROUANI, M. HAMDI: Scale down and optimization of olive mill wastewater decolorization by Geotrichum candidum. Bioprocess Engineering 2000, Vol. 22, No. 6, pp. 503–507.
  • 103. M. P. MIRANDA, G. G. BENITO, N. san CRISTOBAL, C. H. NIETO: Color elimination from molasses wastewater by Aspergillus niger. Bioresource Technology 1996, Vol. 57, No. 3, pp. 229–235.
  • 104. B. van DRIESSEL, L. CHRISTOV: Adsorption of colour from a bleach plant effluent using biomass and cell wall fractions from Rhizomucor pusillus. Journal of Chemical Technology and Biotechnology 2002, Vol. 77, pp. 155–158.
  • 105. J. A. MORILLO, B. ANTIZAR-LADISLAO, M. MONTE-OLIVA-SANCHEZ et al.: Bioremediation and biovalorisation of olive-mill wastes. Applied Microbiology and Bio-technology 2009, Vol. 82, pp. 25–39.
  • 106. A. GONZÁLEZ-GONZÁLEZ, F. CUADROS: Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): An ecoeffiient treatment. Food and Bioproducts Processing 2015, Vol. 95, pp. 339–345.
  • 107. N. C. THANH, R. E. SIMAR: Biological treatment of domestic sewage by fungi. Mycopathologia et Mycologia Applicata 1973, Vol. 51, pp. 223–232.
  • 108. M. FUJITA, A. ERA, M. IKE, S. SODA, N. MIYATA, T. HIRAO: Decolorization of heat-treatment liquor of waste sludge by a bioreactor using polyurethane foam-immobilized white rot fungi equipped with an ultramembrane filtration unit. Journal of Bioscience and Bioengineering 2000, Vol. 90, pp. 387–394.
  • 109. F. M. D. CHEQUER, D. J. DORTA, D. PALMA de OLIVEI-RA: Azo dyes and their metabolites: Does the discharge of the azo dye into water bodies represent human and eco-logical risks? In: P. J. HAUSER [Ed.]: Advances in Treating Textile Effluent, InTech 2011.
  • 110. P . KASZYCKI, K. CZECHOWSKA, P. PETRYSZAK, H. KOŁOCZEK: Konstrukcja efektywnych biocenoz degradujących formaldehyd i jego pochodne w uciążliwych ściekach przemysłowych. Acta Scientiarum Polonorum. Biotechnologia 2003, nr 2(1–2), ss. 91–103.
  • 111. J. POLAK, A. JAROSZ-WILKOŁAZKA: Unieruchomiona biomasa grzybowa jako biokatalizator w syntezie barwników tekstylnych. Inżynieria i Aparatura Chemiczna 2012, t. 51, nr 4, ss. 174–175.
  • 112. A. GÓRALCZYK, A. JASIŃSKA, J. DŁUGOŃSKI: Mikro-organizmy w usuwaniu toksycznych barwników przemysłowych. Postępy Mikrobiologii 2016, t. 55, z. 4, ss. 424–432.
  • 113. A. JASIŃSKA, S. RÓŻALSKA, P. BERNAT, K. PARASZ-KIEWICZ, J. DŁUGOŃSKI: Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration & Biodegradation 2012, Vol. 73 , pp. 33–40.
  • 114. W. PRZYSTAŚ, E. ZABŁOCKA-GODLEWSKA, E .GRA-BIŃSKA-SOTA: Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. Water, Air and Soil Pollution 2013, Vol. 224, pp. 1534–1543.
  • 115. T. KORNIŁŁOWICZ-KOWALSKA, K. RYBCZYŃSKA: Decolorization of Remazol Brilliant Blue (RBBR) and Poly R-478 dyes by Bjerkandera adusta CCBAS 930. Central European Journal of Biology 2012, Vol. 7, pp. 948–956.
  • 116. K. RYBCZYŃSKA, T. KORNIŁŁOWICZ-KOWALSKA: Evaluation of dye compounds’ decolorization capacity of selected H. haematococca and T. harzianum strains by principal component analysis (PCA). Water, Air, and Soil Pollution 2015, 226: 228.
  • 117. A. JAROSZ-WILKOŁAZKA, J. KOCHMAŃSKA-RDEST, E. MAKARCZYK, W. WARDAS, A. LEONOWICZ: Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzyme and Microbial Technology 2002, Vol. 30, pp. 566–572.
  • 118. A. ANASTASI, V. PRIGIONE, L. CASIERI, G. C. VARESE: Decolorisation of model and industrial dyes by mitosporic fungi in different culture conditions. World Journal of Microbiology & Biotechnology 2009, Vol. 25, pp. 1383–1374.
  • 119. M. SOLECKA, S. LEDAKOWICZ: Biologiczne procesy oczyszczania barwnych ścieków włókienniczych. Biotechnologia 2005, nr 2(69), ss. 103–124.
  • 120. T. KORNIŁŁOWICZ–KOWALSKA, M. WRZOSEK, G. GI-NALSKA, H. IGLIK, R. BANCERZ: Identification and application of a new fungal strain Bjerkandera adusta R59 in decolorization of daunomycin wastes. Enzyme and Microbial Technology 2006, Vol. 38, pp. 583–590.
  • 121. U. GUZIK, K. HUPERT-KOCUREK, A. MAZUR, D. WOJ-CIESZYŃSKA: Biotransformacja wybranych niesteroidowych leków przeciwzapalnych w środowisku. Bromatologia i Chemia Toksykologiczna 2013, t. XLVI, nr 1, ss. 105–112.
  • 122. C. CRUZ-MORATO, C. E. RODRIGUEZ-RODRIGUES, E. MARCO-URREA, M. SARRA, G. CAMINAL, T. VI-CENT, A. JELIĆ, M. J. GARCIA-GALAN, S. PEREZ, M. S. DIAZ-CRUZ, M. PETROVIC, D. BARCELO: Biodegradation of farmaceuticals by fungi and metabolites identification. In: T. VICENT, G. CAMINAL, E. ELJARRAT, D. BARCELO [Eds.]: Emerging Organic Contaminants in Sludges. Analysis, Fate and Biological Treatment. The handbook of Environmental Chemistry, Springer Heidelberg, New York-Dordrecht-London 2013.
  • 123. P. BALDRIAN: Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology 2003, Vol. 32, No. 1, pp. 78–91.
  • 124. G. Y. YAN, T. VIRARAGHAVAN: Effect of pretreatment on the biosorption of heavy metals on Mucorrouxii. Water SA 2000, Vol. 26, pp. 119–23.
  • 125. N. N. ZHDANOVA, T. I. REDCHITS, V. A. ZHELTON-ZHSKY, L. V. SADOVNIKOV, M. H. GERZABEK, S. OLSSON, F. STREBL, K. MÜCK: Accumulation of radionuclides from radioactive substrata by some micromycetes. Journal of Environmental Radioactivity 2003, Vol. 67, pp. 119–130.
  • 126. D. M. MATUSIAK: Drobnoustroje radiotolerancyjne - charakterystyka wybranych gatunków oraz ich potencjalne zastosowanie. Postępy Mikrobiologii 2016, t. 55, z. 2, ss. 182–194.
  • 127. S. JEYABHARATHI, R. STEPHAN: Drinking water treatment of natural organic wastes matter with HPSEC profile using white rot fungus. International Journal of Science and Research (IJSR) 2017, Vol. 6, No. 9, pp. 2319–7064.
  • 128. S. SOLARSKA: Application of white-rot fungi for the bio-degradation of natural organic matter from potable water. PhD thesis, RMIT University, Melbourne 2009.
  • 129. M. ALCADE, M. FERRER, F.J. PLOU, A. BALLESTE-ROS: Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnology 2006, Vol. 24, pp. 281–287.
  • 130. D. H. PIEPER, V. A. MARTINS dos SANTOS, P. N. GOLY-SHIN: Genomic and mechanistic insight into the biodegradation of organic pollutants. Current Opinion in Biotechnology 2004, Vol. 15, pp. 215–224.
  • 131. A. GULLOTTO, S. BRANCIAMORE, I. DUCHI, M. F. P. CANO, D. RANDAZZO, S. TILLI, S. GIARDINA, G. SAN-NIA, A. SCOZZAFAVA, F. BRIGANTI: Combined action of a bacterial monooxygenase and a fungal laccase for the biodegradation of mono- and poly-aromatic hydrocarbons. Bioresource Technology 2008, Vol. 99, pp. 8353–8359.
  • 132. T. P. RUGGABER, J. W. TALLEY: Enhancing bioremediation with enzymatic processes: A review. Practice Periodical of Hazardous, Toxic, And Radioactive Waste Management ASCE 2006, Vol. 10, No. 2, pp. 73–85.
  • 133. K. WLIZŁO, J. POLAK, M. GRĄŻ, J. BRYJAK, A. JAROSZ-WILKOŁAZKA: Zastosowanie unieruchomionej lakazy grzybowej w biotransformacji związków aromatycznych. Inżynieria i Aparatura Chemiczna 2015, t. 54, ss. 211–212.
  • 134. O. MARCHUT-MIKOŁAJCZYK, E. KWAPISZ, T. ANTCZAK: Enzymatyczna bioremediacja ksenobiotyków. Inżynieria i Ochrona Środowiska 2013, vol. 16, nr 1, ss. 1–15.
  • 135. K. K. YADAV, J. K. SINGH, N. GUPTA, V. KUMAR: A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. Journal of Materials and Environmental Sciences 2017, Vol. 8, pp. 740–757.
  • 136. P. SUGANYA, P. U. MAHALINGAM: Green synthesis and characterization of zinc sulphide nanoparticles from macro fungi Pleurotus florida. Journal of Applied Chemistry 2017, Vol. 10, No. 7, pp. 37–42.
  • 137. M. ŁEBKOWSKA, M. ZAŁĘSKA-RADZIWIŁŁ: Występowanie i ekotoksyczność nanocząstek. Ochrona Środowiska 2011, vol. 33, nr 4, ss. 23–26.
  • 138. W. ADAMIAK, M. SZKLARCZYK: Possibilities of using ligninolytic fungi for biological waste gas treatment. Environment Protection Engineering 2001, Vol. 27, pp. 45–58.
  • 139. R. LEBRERO, J. C. LOPEZ, I. LEHTINEN, R. PEREZ, G. QUIJANO, R. MUNOZ: Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter. Chemosphere 2016, Vol. 144, pp. 97–106.
  • 140. E. R. RENE, M. C. VEIGA, C. KENNES: Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: Impact of pollutant load and transient operation. Chemosphere 2010, Vol. 79, No. 2, pp. 221–227.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9946506-5b3d-4b83-b47c-3a758c24a57c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.