PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Analysis of Post-Critical States and Damage of Thin-Walled Channel Section Columns Made of Carbon/Epoxy Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of a numerical and experimental analysis of post-critical state of a thin-walled channel-section simply supported beam under axial compression. The beam was made of carbon-epoxy symmetrical composite prepared with a pre-preg technology using 8 layers of unidirectional band. The material used was a composite of epoxy matrix reinforced with carbon fiber (system HexPly M12, Hexcel). The M12 system is used above all in aircraft structures. It exhibits high fatigue durability and good maintenance properties at relatively low specific gravity. The research was lead as the FEM numerical analyses and experimental tests in post-buckling and limit states, as well. Experimental studies were conducted to confirm results obtained from numerical calculations, which was performed using the ABAQUS® software.
Twórcy
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Jakubczak P., Bienias J., Majerski K., et al., The impact behavior of aluminum hybrid laminates, Aircraft Engineering and Aerospace Technology, Special Issue. 2014; SI(86): 287–294.
  • 2. Bienias J., Surowska B., Jakubczak P. The Comparison of Low-Velocity Impact Resistance of Aluminum/Carbon and Glass Fiber Metal Laminates. Polymer Composites. 2016; 37: 1056–1063.
  • 3. Dadej K., Bienias J., Surowska B. Residual fatigue life of carbon fibre aluminium laminates. International Journal of Fatigue. 2017; 1(100): 94–104.
  • 4. Campbell F.C. Manufacturing Processes for Advanced Composites. Elsevier; 2004.
  • 5. Campbell F.C. Manufacturing Technology for Aerospace Structural Materials. Elsevier; 2006.
  • 6. Mason K. Autoclave Quality Outside the Autoclave? High Performance Composites; 2006:March.
  • 7. Prepreg technology, Hexcel Publication; 2005. www.hexcel.com
  • 8. Bohse J. Damage analysis of polymer matrix composites by acoustic emission testing, Proceedings of European Working Group on Acoustic Emission, Berlin. 2004; 339–348.
  • 9. http://www.vallen.de.
  • 10. Ye J., Zhang B., Qi H. Cost estimates to guide manufacturing of composite waved beam. Materials and Design. 2009; 30: 452–458.
  • 11. Habermehl J., Lamarre A. Ultrasonic phased array tools for composite inspection during maintenance and manufacturing. In: 17th world conference on nondestructive testing, Shanghai, China 2008, 832–839.
  • 12. Bienias J., Jakubczak P., Majerski K., et al., Methods of ultrasonic testing, as an effective way of estimating durability and diagnosing operational capability of composite laminates used in aerospace industry. Eksploatacja i niezawodność – Maintenance and Reliability. 2013; 15: 284–289.
  • 13. Dębski H., Teter A., Kubiak T., Samborski S. Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Composite Structures. 2016; 136: 593–601.
  • 14. Dębski H., Jonak J. Failure analysis of thin-walled composite channel section columns. Composite Structures. 2015; 132: 567–574.
  • 15. Kopecki T., Mazurek P. Problems of numerical bifurcation reproducing in post-critical deformation states of aircraft structures, Journal of Theoretical and Applied Mechanics. 2013; 51: 969–977.
  • 16. Kopecki T., Mazurek P. Numerical representation of post-critical deformations in the processes of determining stress distributions in closed multisegment thin-walled aircraft load-bearing structures, Eksploatacja i Niezawodnosc–Maintenance and Reliability. 2014; 16: 164–169.
  • 17. Falkowicz K., Ferdynus M., Dębski H. Numerical analysis of compressed plates with cut-out operating in the geometrically nonlinear range, Eksploatacja i Niezawodnosc–Maintenance and Reliability. 2015; 17: 222–227.
  • 18. Abaqus HTML Documentation.
  • 19. Reddy J.N. Mechanics of laminate composite plates, theory and analysis, CRC Press LLC, Baca Raton; 2004.
  • 20. Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials, J. Compos. Mater. 1971; 24: 58–80.
  • 21. Benzeggagh M.L., Khellil K., Chotard T. Experimental determination of Tsai Failure Tensorial Terms Fij for unidirectional composite material, Composites Science and Technology. 1995; 55: 145–156.
  • 22. Golaski L. Failure criteria for laminates under combined loading conditions, in: D. Francois, L. Golaski (Eds.), Joint Seminary on Failure of Advanced Materials, Kielce University of Technology, Paris-Kielce; 1996; 37–61.
  • 23. Altenbach H., Altenbach J. W. Kissing, Structural analysis of laminate and sandwich beams and plates. An introduction into the mechanics of composite, Lubelskie Towarzystwo Naukowe, Lublin; 2001.
  • 24. Tsai S.W. Composites Design, Fourth Edition, Think Composites, Dayton, Paris, and Tokyo; 1988.
  • 25. Capitani V., Capriolo M., Sendi D. Characterization of Casting Defects in Composite Carbon Fiber Material Detected by Ultrasonic Inspection, Ultrasund. 2011; 66: 14–20.
  • 26. Schnars U., Henrich R. Applications of NDT Methods on Composite Structures in Aerospace Industry, Proceedings of CDCM 2006 - Conference on Damage in Composite Materials, Stuttgart, Germany 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9946359-f80f-4eb4-91ad-0d10197c7d7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.