PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hardfacing of mild steel with wear-resistant Ni-based powders containing WC particles using PPTAW technology

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores the use of powder plasma transferred arc welding (PPTAW) as a surface layers deposition technology to form hardfaced coatings to improve upon the wear resistance of mild steel. Hardfaced layers/coatings were prepared using the PPTAW process with two different wear-resistant powders: PG 6503 (NiSiB+60% WC) and PE 8214 (NiCrSiB+45% WC). By varying the PPTAW process parameters of plasma gas flow rate (PGFR) and plasma arc current, hardfaced layers were prepared. Microscopic examinations were carried out to investigate the microstructure and surface characteristics of the prepared hardfaced layers. Penetration tests were performed to ascertain the number and depth of crack sites in the prepared samples by visual inspection. The hardness of the hardfaced layers were determined: hardfacings prepared with PG 6503 had hardness of 46.3 - 48.3 HRC, those prepared with PE 8214 had hardness of 52.7 - 58.3 HRC. The microhardness of the matrix material was in the range of 573.3 - 893.0 HV, and the carbides had microhardness in the range of 2128.7 - 2436.3 HV. Abrasive wear resistance tests were carried out on each prepared sample to determine their relative abrasive wear resistance relative to the reference material, abrasion resistant heat-treated steel, Hardox 400, having a nominal hardness of approximately 400 HV. Findings from the research showed that the wear resistance of the mild steel was improved after deposition of hardfaced layers; the hardness and wear resistance were increased upon addition of Cr as an alloying element; increasing the PGFR increased the hardness and wear resistance of the hardfacings, as well as increase in the number of cracks; increasing the PTA current resulted in hardfacings with less cracks, but relatively lowered the wear resistance. The wear mechanisms were discussed.
Rocznik
Tom
Strony
3--18
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
  • Laboratory of Materials Research, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Laboratory of Materials Research, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Student of the Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Student of the Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Student of the Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Welding Engineering, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Department of Welding Engineering, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Laboratory of Materials Research, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On coating techniques for surface protection: A review. J. Manuf. Mater. Process. 2019, 3, 28, doi:10.3390/jmmp3010028.
  • 2. Ashby, M.F.; Jones, D.R.H. Engineering materials 1: an introduction to properties, applications and design; Elsevier, 2012; Vol. 1; ISBN 0080966659.
  • 3. Kern, W.; Schuegraf, K.K. Deposition technologies and applications: Introduction and overview. In Handbook of Thin Film Deposition Processes and Techniques; Elsevier, 2001; pp. 11-43.
  • 4. Branagan, D.J.; Marshall, M.C.; Meacham, B.E. High toughness high hardness iron based PTAW weld materials. Mater. Sci. Eng. A 2006, 428, 116-123, doi:10.1016/j.msea.2006.04.089.
  • 5. Veinthal, R.; Sergejev, F.; Zikin, A.; Tarbe, R.; Hornung, J. Abrasive impact wear and surface fatigue wear behaviour of Fe-Cr-C PTA overlays. Wear 2013, 301, 102-108, doi:10.1016/j.wear.2013.01.077.
  • 6. Rohan, P.; Boxanova, M.; Zhang, L.; Kramar, T.; Lukac, F. High speed steel deposited by pulsed PTA-Frequency influence. In Proceedings of the Proceedings to International Thermal Spray Conference, Dusseldorf, Germany; 2017; pp. 404-407.
  • 7. Zikin, A.; Hussainova, I.; Katsich, C.; Badisch, E.; Tomastik, C. Advanced chromium carbide-based hardfacings. Surf. Coatings Technol. 2012, 206, 4270-4278, doi:10.1016/j.surfcoat.2012.04.039.
  • 8. Skowrońska, B.; Sokołowski, W.; Rostamian, R. Structural investigation of the Plasma Transferred Arc hardfaced glass mold after operation. Weld. Technol. Rev. 2020, 92, 55-56, doi:10.26628/wtr.v92i3.1109.
  • 9. Bober, M.; Senkara, J. Comparative tests of plasma-surfaced nickel layers with chromium and titanium carbides. Weld. Int. 2016, 30, 107-111, doi:10.1080/09507116.2014.937616.
  • 10. Niu, J.; Guo, W.; Guo, M.; Lu, S. Plasma application in thermal processing of materials. Vacuum 2002, 65, 263-266, doi:10.1016/S0042-207X(01)00430-4.
  • 11. Mendez, P.F.; Barnes, N.; Bell, K.; Borle, S.D.; Gajapathi, S.S.; Guest, S.D.; Izadi, H.; Gol, A.K.; Wood, G. Welding processes for wear resistant overlays. J. Manuf. Process. 2014, 16, 4-25, doi:10.1016/j.jmapro.2013.06.011.
  • 12. Kesavan, D.; Kamaraj, M. The microstructure and high temperature wear performance of a nickel base hardfaced coating. Surf. coatings Technol. 2010, 204, 4034-4043, doi:10.1016/j.surfcoat.2010.05.022.
  • 13. Szala, M.; Hejwowski, T.; Lenart, I. Cavitation erosion resistance of Ni-Co based coatings. Adv. Sci. Technol. Res. J. 2014, 8, doi:10.1016/j.wear.2011.05.012.
  • 14. Mandal, S.; Kumar, S.; Bhargava, P.; Premsingh, C.H.; Paul, C.P.; Kukreja, L.M. An experimental investigation and analysis of PTAW process. Mater. Manuf. Process. 2015, 30, 1131-1137, doi:10.1080/10426914.2014.984227.
  • 15. Qi, C.; Zhan, X.; Gao, Q.; Liu, L.; Song, Y.; Li, Y. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding. Opt. Laser Technol. 2019, 119, 105572, doi:10.1016/j.optlastec.2019.105572.
  • 16. Ye, T.; Ju, J.; Fu, H.; Ma, S.; Lin, J.; Lei, Y. Effects of Chromium Content on Microstructure, Hardness, and Wear Resistance of As-Cast Fe-Cr-B Alloy. J. Mater. Eng. Perform. 2018, 28, 6427-6437, doi:10.1007/s11665-019-04369-5.
  • 17. Huang, S.W.; Samandi, M.; Brandt, M. Abrasive wear performance and microstructure of laser clad WC/Ni layers. wear 2004, 256, 1095-1105, doi:10.1016/S0043-1648(03)00526-X.
  • 18. Czupryński, A.; Żuk, M. Matrix Composite Coatings Deposited on AISI 4715 Steel by Powder Plasma-Transferred Arc Welding. Part 3. Comparison of the Brittle Fracture Resistance of Wear-Resistant Composite Layers Surfaced Using the PPTAW Method. Materials (Basel). 2021, 14, 6066, doi:10.3390/ma14206066.
  • 19. Xu, H.; Huang, H.; Liu, Z. Influence of Plasma Transferred Arc Remelting on Microstructure and Properties of PTAW-Deposited Ni-Based Overlay Coating. J. Therm. Spray Technol. 2021, 30, 946-958, doi:10.1007/s11666-021-01183-1.
  • 20. Li, G.L.; Ma, J.L.; Wang, H.D.; Kang, J.J.; Xu, B.S. Effects of argon gas flow rate on the microstructure and micromechanical properties of supersonic plasma sprayed nanostructured Al2O3 -13 wt.%TiO2 coatings. Appl. Surf. Sci. 2014, 311, 124-130, doi:10.1016/j.apsusc.2014.05.025.
  • 21. El-Mahallawi, I.; Abdel-Karim, R.; Naguib, A. Evaluation of effect of chromium on wear performance of high manganese steel. Mater. Sci. Technol. 2001, 17, 1385-1390, doi:10.1179/026708301101509340.
  • 22. Wilden, J.; Bergmann, J.P.; Frank, H. Plasma transferred arc welding-modeling and experimental optimization. J. Therm. spray Technol. 2006, 15, 779-784, doi:10.1361/105996306X146767.
  • 23. Yibo, X.; Dongqing, L.; Zhizhen, Z.; Jianjun, L.; Tiantian, D. The Effect of Different Arc Currents on the Microstructure and Tribological Behaviors of Cu. 2018, doi:10.3390/met8120984.
  • 24. Czupryński, A. Microstructure and Abrasive Wear Resistance of Metal Matrix Composite Coatings Deposited on Steel Grade AISI 4715 by Powder Plasma Transferred Arc Welding Part 1. Mechanical and Structural Properties of a Cobalt-Based Alloy Surface Layer Reinforced with P. Materials (Basel). 2021, 14, 2382, doi:10.3390/ma14112805.
  • 25. Fernandes, F.; Lopes, B.; Cavaleiro, A.; Ramalho, A.; Loureiro, A. Effect of arc current on microstructure and wear characteristics of a Ni-based coating deposited by PTA on gray cast iron. Surf. Coatings Technol. 2011, 205, 4094-4106, doi:10.1016/j.surfcoat.2011.03.008.
  • 26. Paes, R.M.G.; Scheid, A. Effect of deposition current on microstructure and properties of CoCrWC alloy PTA coatings. Soldag. Inspeção 2014, 19, 247-254, doi:10.1590/0104-9224/si1903.07.
  • 27. Om, H.; Pandey, S. Effect of heat input on dilution and heat affected zone in submerged arc welding process. Sadhana 2013, 38, 1369-1391, doi:10.1007/s12046-013-0182-9.
  • 28. Bansal, A.; Zafar, S.; Sharma, A.K. Microstructure and abrasive wear performance of Ni-WC composite microwave clad. J. Mater. Eng. Perform. 2015, 24, 3708-3716, doi:10.1007/s11665-015-1657-0.
  • 29. Qiao, L.; Wu, Y.; Hong, S.; Long, W.; Cheng, J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram. Int. 2021, 47, 1829-1836, doi:10.1016/j.ceramint.2020.09.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f98e3d11-424c-49e4-a435-eea2f78f4953
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.