PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of the low temperature bainite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of obtaining steels with nano-size plates of bainitic-ferrite by isothermal transformation at low temperature is set forth. These steels have attracted great interest due to their excellent combination of strength, toughness, and ductility. In further investigations, the composition and the processing methods of these steels are adjusted to: (1) Optimize their technological properties with regard to mechanical behavior, weldability and formability. (2) Accelerate their transformation kinetics. (3) Minimize/eliminate the need for expensive alloying elements. (4) Lower the martensite start temperature (Ms) either by thermo-mechanical processing or by modifying the bainite transformation stage. Suppressing Ms is of particular importance in steels with relatively low carbon content; that is to allow for bainite formation at low temperature. Furthermore, many reports addressed some technological aspects like fatigue behavior, wear resistance and bake hardenability. This article presents an overview of the so far studied alloying strategies and processing methods adopted for developing the low temperature bainite together with addressing some examined technological themes. The paper is engrafted in relevant sections with new results of the authors that are not published before. One of these results is that the low temperature bainite possesses a very strong bake hardening potential.
Rocznik
Strony
403--412
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
  • Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Strasse, 42, 38678 Clausthal-Zellerfeld, Germany
autor
  • Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Strasse, 42, 38678 Clausthal-Zellerfeld, Germany
Bibliografia
  • [1] B.P.J. Sandvik, H.P. Nevalainen, Structure–property relationships in commercial low-alloy bainitic–austenitic steel with high strength, ductility, and toughness, Materials Science and Technology 8 (1981) 213–220.
  • [2] H.K.D.H. Bhadeshia, D.V. Edmonds, Bainite in silicon steels new composition-property approach Part 1, Materials Science and Technology 17 (1983) 411–419.
  • [3] F.C. Zhang, B. Lv, C.L. Zheng, Q. Zou, M. Zhang, M. Li, T.S. Wang, Microstructure of the worn surfaces of a bainitic steel railway crossing, Wear 268 (2010) 1243–1249.
  • [4] J. Mahieu, B.C. De Cooman, S. Claessens, Galvanizability of high-strength steels for automotive applications, Metallurgical and Materials Transaction A 32 (11) (2001) 2905–2908.
  • [5] P. Pointner, High strength rail steels – the importance of material properties in contact mechanics problems, Wear 265 (2008) 1373–1379.
  • [6] J. Chakraborty, D. Bhattacharjee, I. Manna, Austempering of bearing steel for improved mechanical properties, Scripta Materialia 59 (2008) 247–250.
  • [7] E. Kozeschnik, H.K.D.H. Bhadeshia, Influence of silicon on cementite precipitation in steels, Materials Science and Technology 24 (2008) 343–347.
  • [8] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Development of hard bainite, ISIJ International 43 (2003) 1238–1243.
  • [9] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite, ISIJ International 43 (2003) 1821–1825.
  • [10] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Very strong low temperature bainite, Materials Science and Technology 18 (2002) 279–284.
  • [11] F.G. Caballero, H.K.D.H. Bhadeshia, Very strong bainite, Current Opinion in Solid State and Materials Science 8 (2004) 251–257.
  • [12] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Design of novel high-strength bainitic steels: Part I, Materials Science and Technology 17 (2001) 512–516.
  • [13] H.K.D.H. Bhadeshia, Nanostructured bainite, Proceedings of the Royal Society of London A 466 (2010) 3–18.
  • [14] M.J. Peet, H.K.D.H. Bhadeshia, Surface relief due to bainite transformation at 473 K (200 8C), Metallurgical and Materials Transaction A 42 (2011) 3344–3348.
  • [15] M.N. Yoozbashi, S. Yazdani, T.S. Wang, Design of a new nanostructured, high-Si bainitic steel with lower cost production, Materials and Design 32 (2011) 3248–3253.
  • [16] J. Yang, T.S. Wang, B. Zhang, F.C. Zhang, Microstructure and mechanical properties of high-carbon Si–Al-rich steel by low-temperature austempering, Materials and Design 35 (2012) 170–174.
  • [17] H. Huang, M.Y. Sherif, P.E.J. Rivera-Díaz-del-Castillo, Combinatorial optimization of carbide-free bainitic nanostructures, Acta Materialia 61 (2013) 1639–1647.
  • [18] US 20110126946 A1, Bainite steel and methods of manufacture thereof, 2 (2011).
  • [19] M. Soliman, H. Palkowski, Controlled setting of the transformation kinetics and the structure constituents in low-temperature bainite steels, in: The Minerals, Metals & Materials Society (Ed.), TMS 2013 Supplemental Proceedings, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2013 901–908.
  • [20] M. Soliman, H. Palkowski, Verfahren zum Herstellen eines Bauteils mit bainitischem Gefüge und entsprechendes Bauteil, DE102012017143 B3 (2012).
  • [21] H. Amel-Farzad, H.R. Faridi, F. Rajabpour, A. Abolhasani, S. Kazemi, Y. Khaledzadeh, Developing very hard nanostructured bainitic steel, Materials Science & Engineering A 559 (2013) 68–73.
  • [22] H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 2001.
  • [23] M. Soliman, H. Palkowski, Ultra-fine bainite structure in hypo-eutectoid steels, ISIJ International 47 (2007) 1703–1710.
  • [24] H.I. Aaronson, H.A. Domian, G.M. Pound, Thermodynamics of the austenite-proeutectoid ferrite transformation: Fe–C alloys, Transactions of the Metallurgical Society of AIME 236 (1966) 753–767.
  • [25] S. Kharea, K. Leeb, H.K.D.H. Bhadeshia, Relative effects of Mo and B on ferrite and bainite kinetics in strong steels, International Journal of Materials Research 100 (2009) 1513– 1520.
  • [26] H.S. Yang, H.K.D.H. Bhadeshia, Designing low carbon, low temperature bainite, Materials Science and Technology 24 (3) (2008) 335–342.
  • [27] M. Soliman, H. Mostafa, A.S. El-Sabbagh, H. Palkowski, Low temperature bainite in steel with 0.26 wt% C, Materials Science & Engineering A 527 (2010) 7706–7713.
  • [28] L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, Y. Tian, Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si, Materials and Design 39 (2012) 264–268.
  • [29] Y.H. Wang, F.C. Zhang, T.S. Wang, A novel bainitic steel comparable to maraging steel in mechanical properties, Scripta Materialia 68 (2013) 763–766.
  • [30] X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Carbide-free bainite in medium carbon steel, Materials and Design 64 (2014) 237–245.
  • [31] X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, G.R. Purdy, H.S. Zurob, Mechanical behavior of carbide-free medium carbon bainitic steels, Metallurgical and Materials Transaction A 45A (3) (2014) 1352–1361.
  • [32] S. Das, A. Haldar, Continuously cooled ultrafine bainitic steel with excellent strength–elongation combination, Metallurgical and Materials Transactions A 45A (2014) 1844–1854.
  • [33] G. Papadirnitriou, G. Fourlaris, A TEM investigation of the stepped bainite reaction in silicon steels, Journal de Physique IV France 7 (1997), C5-131–C5-136.
  • [34] K. Hase, C. Garcia-Mateo, H.K.D.H. Bhadeshia, Bimodal size- distribution of bainite plates, Materials Science & Engineering A 438–440 (2006) 145–148.
  • [35] V.T. Duong, Y.Y. Song, K.-S. Park, H.K.D.H. Bhadeshia, D.-W. Suh, Austenite in transformation-induced plasticity steel subjected to multiple isothermal heat treatments, Metallurgical and Materials Transactions A 45A (2014) 4201– 4209.
  • [36] H.S. Hasan, M. Peet, H.K.D.H. Bhadeshia, S. Wood, E. Booth, Temperature cycling and the rate of the bainite transformation, Materials Science and Technology 26 (4) (2010) 453–456.
  • [37] M. Soliman, B. Weidenfeller, H. Palkowski, Metallurgical phenomena during processing of cold rolled TRIP steel, Steel Research International 80 (1) (2009) 57–65.
  • [38] M. Zhang, Y.H. Wang, C.L. Zheng, F.C. Zhang, T.S. Wang, Austenite deformation behavior and the effect of ausforming process on martensite starting temperature and ausformed martensite microstructure in medium-carbon Si–Al-rich alloy steel, Materials Science and Technology A596 (2014) 9–14.
  • [39] M. Soliman, H. Palkowski, Thermo-mechanische Simulation zur Einstellung mechanischer Eigenschaften des Super- Bainits, Neuere Entwicklungen in der Massivumformung, Stuttgart, 2013, pp. 337–341.
  • [40] M. Soliman, H. Palkowski, Microstructure development and mechanical properties of medium carbon carbide-free bainite steels, Procedia Engineering 81 (2014) 1036–1311.
  • [41] M.J. Peet, P. Hill, M. Rawson, S. Wood, H.K.D.H. Bhadeshia, Fatigue of extremely fine bainite, Materials Science and Technology 27 (2011) 119–123.
  • [42] B.R. Shendy, M.N. Yoozbashi, B. Avishan, S. Yazdani, An investigation on rotating bending fatigue behavior of nanostructured low-temperature bainitic steel, Acta Metallurgica Sinica (English Letters) 27 (2014) 233–238.
  • [43] T.S. Wang, J. Yang, C.J. Shang, X.Y. Li, B. Lv, M. Zhang, F.C. Zhang, Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment, Surface and Coatings Technology 202 (2008) 4036– 4040.
  • [44] A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, G. Caballero, C. Garcia-Mateo, R. Elvira, Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions, Wear 298–299 (2013) 42–47.
  • [45] F.C. Zhang, T.S. Wang, P. Zhang, C.L. Zheng, B. Lv, M. Zhang, Y.Z. Zheng, Novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel, Scripta Materialia 59 (2008) 294–296.
  • [46] P. Zhang, F.C. Zhang, Z.G. Yan, T.S. Wang, L.H. Qian, Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel, Wear 271 (2011) 697–704.
  • [47] S. Das, S.B. Singh, O.N. Mohanty, Effect of free carbon and aging condition on bake hardening, Ironmaking and Steelmaking 38 (2011) 139–143.
  • [48] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Materialia 59 (2011) 658–670.
  • [49] M.Y. Sherif, Characterisation and Development of Nanostructured, Ultrahigh Strength, and Ductile Bainitic Steels, (Ph.D. thesis), University of Cambridge, 2006.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f98d9bd8-339d-4a1d-bb7c-caf947aa476f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.