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Abstract 

The safety, comfort of the crews, stability, economics of the equipment when ship operating is the leading 
requirement in the field of designing and manufacturing marine structure and machinery. As a result, all parts of the 
ships must be tested and inspected to meet the basic safety requirements of the shipping association. The design, 
manufacture, testing in the maritime field in general and shipbuilding sector in particular are expensive, time 
consuming: such as aerodynamic experiments of the engine, collision test, ship manoeuvring, vibration test and 
balance of deck beams, hull beams, hatch covers, shafts ...thus experimental works are sometimes impossible. Along 
with the development of computer science, many numerical models and software programs have been developed to 
solve these difficult problems. There are many numerical modelling methods, starting with the finite difference 
method, the boundary element method, the finite element method, the no mesh method, the weight residue or the 
energy method. The Work will be limited to the analysis of the most popular numerical modelling method - finite 
element method using Patran and Nastran software. In the first step of our research, T-beam was analysed as a part of 
ship hull structure (thin-walled structure). The article goes into the analysis of the accuracy of selected numerical 
models for the natural vibration frequency of the T-beams mounted on the plate. After modelling, calculating the 
natural frequency of the T-beam using the Patran - Nastran software, the results were compared with the theoretical 
values. From that, we evaluate the dispersion and error of different numerical models and select the optimal 
numerical model. Optimal model will be used for modelling full ship hull with superstructure. 
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1. Introduction

Vibration has always been a very important subject for naval architects and structural engineers 
as its presence can seriously affect the comfort of passengers on ships and the integrity of 
structures like ships, bridges, offshore structures, airplanes, cars etc. It is well known that 
structures can resonate, that is, relatively small forces can result in significant deformation, and 
possibly, damage can be induced in the structure. “Ship hull vibration is an old but a new 
problem” is often said by many naval architects and marine engineers. That is because the 
vibration of the hull structures caused serious problems in old times and that it still now brings 
new kinds of problems. 

Determining the natural vibration frequencies are the first and most important problem of 
dynamic analysis. Determining the natural vibration frequency of the devices will help marine 
engineers solve the vibration resonance problem of equipments. This helps to increase the life 
span, reliability of the equipment, the safety, and comfort of the crew as well as passengers on 
board. In engineering field, vibration behaviour of an element plays a key role without which it is 
incomplete. Resonance is a key aspect in dynamic analysis, which is the frequency of any system 
matches with the natural frequency of the system, which may lead to catastrophes or system 
failure. Modal analysis has become a major alternative to provide a helpful contribution in 
understanding control of many vibration phenomena, which encountered in practice. 
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Ship hull and superstructure is typical thin-walled structure: plates with stiffeners – beams. 
Beams are basic structural members of a ship structure and their vibration analysis is thus very 
important. Vibration of deck beams of a ship takes place when the forcing disturbances come from 
the shafting or propellers [11]. Okumoto et al. [6] mentioned that the unbalanced forces of engines 
are so large that they can produce hull girder vibration. They also showed that the deck of a pure 
car carrier and a hatch cover of a bulk carrier could be effectively modelled as a beam to calculate 
their natural frequencies as these members can be subjected to vibrations. 

Many researchers have worked on transverse vibration of beams and as this is a subject of 
practical engineering interest, has been the objective of many recent theoretical investigations. For 
instance, the bending linear vibration of an elastically restrained beam carrying concentrated 
masses located within the beam span was analysed by Hamdan and Jubran [1] and in the analysis, 
the base beam equation of motion is solved to obtain mode shape functions, which satisfy all the 
geometric and natural boundary conditions at the beam-ends. These functions are used in 
conjunction with Galerkin's method to obtain the free and the forced response. Rossit and Laura 
[8] presented the exact solution of free vibrations of a cantilever beam with a spring-mass system 
attached to the free end using the Bernoulli-Euler theory of beam vibrations. Natural frequencies 
are obtained for a wide range of the intervening physical parameters. The problem is of interest in 
naval and ocean engineering systems since in order to avoid dangerous resonance conditions the 
designer must be able to predict natural frequencies of the overall mechanical system: structure–
motor and its elastic mounting. Many other researchers have made important contributions in the 
field of dynamic analysis of beams. They are Lau [3], Schafer and Holzach [10], Kojima et al [2], 
Liu and Huang [4], Nagaya and Ishikawa [5] etc. The target of these studies is to understand the 
behaviour of beams so that proper remedial measure can be taken to control the vibration that may 
result. 

2. Analytical and FEM models of the beam

In the present case, we consider a T-beam is 1308 mm in length, of which 308 mm is mounted 
on the plate. The material, properties of the T-beam and the plate are presented in the Tab. 1. The 
analysed beam is presented in Fig. 1. 
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Fig. 1. Mathematical model of beam mounted on the plate 
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Tab. 1. Material properties of aluminum model used in the calculations 

Dimension/Properties T-beams made of aluminum Plate made of aluminum 
Length [mm] 1308 352 
Width [mm] 49.8 220 
Thickness [mm] 5.1 12.5 
Height [mm] 50 - 
Young’s Modulus E [GPa] 70 70 
Density of the material ρ [kg/m3] 2800 2800 
Poisson’s ratio ν 0.33 0.33 

First of all, we should calculate the natural vibration frequencies of the T-beam using the 
theory. Let us consider a T-beam mounted on the plate as shown in Fig. 1. According to 
documents of Rao [7], the natural frequency of transverse vibration and mode shapes are as 
follows: 
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where A = 0.00048297 m2 be the cross sectional area, E = 7·1010 Pa be the modulus of elasticity, 
ρ = 2800 kg/m3 be the density, L = 1 m (free part of the T-beam from the fixed position to the free 
end) be the length of the beam, I be the moment of inertia, λ1 = 4.73004074, λ2 = 7.85320462,  
λ3 = 10.99560790, λ4 = 14.13716550 and λ5 = 17.27875970. 

Mode shapes are given by: 

cosh cos sinh sini i i i
i

x x x x
L L L L
λ λ λ λβ  − − − 

 
, (2) 

where cosh cos
sinh sin

i i
i

i i

λ λβ
λ λ
−

=
−

, i = 1, 2, 3, 4 and 5.  

One may find the detailed derivation of the above expressions in Rao [7]. 
Calculate the moment of inertia of the T-beam cross section I: according to the document by 

G. H. Ryder [9], the moment of inertia I in x-axis is calculated and presented in Fig. 2, where:  
C1 – centroid of rectangle number 1, 
C2 – centroid of rectangle number 2, 
C – centroid of cross-section of the T-beam. 
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Fig. 2. Model for calculating moment of inertia of the T-beam cross section 
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Select the coordinate system as shown in Fig. 2, coordinate C is calculated as follows: 

C1 1 C2 2
C

1 2

y A y Ay
A A
+

=
+

, (3) 

xC = 0, because y is the symmetry axis. So, the coordinate of C(0;14,403). 
Moment of inertia of the T-beam cross section: 

(1) (2)
C C Cx x xI I I= + , (4) 

where: 
32(1) (1) 2

C1 C 1C C1
49.8 (5.1) (11.854) 253.98 36239.0896

12x xI I y y A ⋅
= + ⋅ = + ⋅ = , 

32(2) (2) 2
C2 C 1C C2

5.1 (44.9) (13.147) 228.99 78049.9688
12x xI I y y A ⋅

= + ⋅ = + ⋅ = . 

So, I = 114289.058 mm4 = 1.14289·10–7 m4 
In the next step, the beam was modelled with usage of Patran-Nastran FEM software. Beam 

property analysed by the program is presented in Fig. 3. 
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Fig. 3. Beam property analysis by PATRAN software: shape of the cross-section (a) and properties (b) 

Several, different FEM models can be used during structure characteristics analyses. The 
following models of the aluminium cantilever beam were considered (Fig. 4): 
– Model T-beam one-dimensional (1D): T-beams are mounted on the plate with an offset equal

to 0.014 m. The plate uses hexagonal three-dimensional finite elements (Hex8), beams use one-
dimensional finite elements of bar form (Bar2), aluminium material: basic, diagonal mass 
matrix, number of nodes 606, number of elements 132 (Bar2) and 212 (Hex8), 

– Model T-beam two-dimensional (2D): T-beams are mounted on the plate. The plate uses
hexagonal three-dimensional finite elements (Hex8), beams use two-dimensional finite 
elements of quadrilateral form (Quad4), aluminum material: basic, diagonal mass matrix, 
number of nodes 13274, number of elements 5241 (Quad4) and 6011 (Hex8), 

– Model T-beam three-dimensional (3D): T-beams are mounted on the plate. The plate and the
beam use hexagonal three-dimensional finite elements (Hex8), aluminum material: basic, 
diagonal mass matrix, number of nodes 5114, number of elements 1950 (Hex8). 
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One-dimensional T-beam Two-dimensional T-beam Three-dimensional T-beam 

Fig. 4. FEM models of the analysed T-beam 

3. Comparative results of natural frequencies

After replacing the parameters such as moment of inertia of the T-beam cross section I, cross-
sectional area A, length of T-beam L, density and λ coefficient of the T-beam, into Equation 1, we 
will obtain the natural frequencies of the T-beam as theoretical. The models of the T-beam are 
simulated by determination of the geometry characteristics, material properties and density, 
boundary conditions and meshing in the Patran software. The data will be transferred to the 
Nastran software to calculate the natural frequencies of the T-beam. The final result processed and 
the graphics of the results can be presented again in the Patran software. Results of natural 
frequencies found out by hand calculation using equation (1) and by finite element modal analysis 
(free vibration without damping determined by professional software MSC NASTRAN) are 
presented in Tabs. 2 and 3. The comparative results was performed for evaluation the accuracy 
level and the errors of the selected model. Since then identifies the most optimal numerical model, 
which can be applied to calculate and evaluate the vibrations of other important marine structures. 
It is to be noted that finite element analysis produces flexural modes along with other modes like 
twisting, in plane and mixed. Within the framework of this article, we have only considered the 
flexural modes. Specifically, we will consider three bending modes of the T-beam. The 
comparison between one-, two-, and three-dimensional models is shown in Fig. 5. 

Fig. 5. Compare the relative error of the natural frequencies of 1D, 2D, 3D models with theoretical results 

437



 
D. Van Doan, L. Murawski 

Tab. 2. Natural frequencies for each cantilever beam models 

Shapes/Models 
Natural frequencies [Hz] 

T-beam one  
dimensional (1D) 

T-beam two  
dimensional (2D) 

T-beam three  
dimensional (3D) 

1 29.799 28.698 29.563 

2 43.674 42.829 41.173 

3 185.11 115.13 121.66 

4 268.11 175.31 181.55 

5 511.17 263.24 253.66 

6 727.45 339.18 359.09 

7 982.29 447.99 469.44 

8 1272.9 590.74 628.4 

9 1365.9 712.2 689.3 

10 1584.8 766.1 792.09 
 

Tab. 3. Comparison of the natural frequencies of the beam calculated in theory and FEM software  

Normal 
mode 

Hand calculation Model  
1D  

f1 [Hz] 

(Δf/f )  
[%] 

Model  
2D  

f2 [Hz] 

(Δf/f )  
[%] 

Model  
3D 

f3 [Hz] 

(Δf/f )  
[%] Frequency  

[rad/s] 
Frequency  

f [Hz] 

1 270.467 43.068 43.674 1.407 42.829 0.0555 41.173 5.726 

2 1694.739 269.863 268.11 0.637 263.24 2.442 253.66 6.004 

3 4745.331 755.626 727.45 3,729 712.2 5,747 689.3 8.777 

 
The results of natural vibration frequencies is better (smaller relative error) when increasing the 

number of finite elements (increasing the mesh density) – bigger meshing leads to errors and 
dispersion minimization of the calculated results. However, increasing the number of finite 
elements will increase the computational time, requiring higher computer configuration, making it 
difficult to calculate. It is important for such complicated structures as ship hull and superstructure. 
Therefore, it is important to choose the appropriate number of finite elements. In addition, the 
choice of one-dimensional, two-dimensional, three-dimensional models also influenced the results 
of natural vibration frequencies obtained by the software Nastran, one-dimensional model for the 
most accurate results - the maximum error does not exceed 4%, followed by two-dimensional 
numerical modelling – error of up to 6% and finally the three-dimensional model – the largest 
error of almost 9%.  

With numerical models when the number of finite elements is too small, the resulting vibration 
curve is not smooth, Particularly prominent in the one-dimensional model (compare Fig. 6-8), so 
accuracy is not high, the dispersion of the results will be large, leading to large errors in the 
calculation. Determining the exact frequency of vibration alone will help designers, equipment 
manufacturers avoid the resonant vibration regions, endangering, destroying equipment. 

Natural frequency for different mode shapes for T-beam mounted on the plate.  
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2nd mode 4th mode 6th mode 

Fig. 6. Modes of vibration for T-beams of one-dimensional model with The T-beam: number of elements 132 (Bar2) 
and the plate: number of elements 212 (Hex8) 

2nd mode 5th mode 9th mode 

Fig. 7. Modes of vibration for T-beams of two-dimensional model with The T-beam: number of elements 5241 (Quad4) 
and the plate: number of elements 6011 (Hex8) 

2nd mode 5th mode 9th mode 

Fig. 8. Modes of vibration for T-beams of three-dimensional model with The T-beam and plate: number of elements 
1950 (Hex8) 

4. Conclusions

A detailed finite element analysis on the basic dynamic behaviour of the T-beam mounted on 
the plate is presented first. The results are then compared with hand calculation using theoretical 
equations. The closeness of comparison validates the choice of elements and procedure of analysis. 
The type of analysis was selected: modal analysis. By modal analysis, the natural frequencies and 
mode shapes are found. 

The analysis also shows that the one-dimensional model for the most accurate results - the 
maximum error does not exceed 4%, followed by two-dimensional numerical modelling – error of 
up to 6% and finally the three-dimensional model – the largest error of almost 9%. However, the 
errors are different for different mode shape. Obviously, 3-D model should not be used during ship 
structure modelling. However, 1-D model gives better results for higher mode shape, when 2-D 
model is better for first natural mode. Therefore, during ship structure modelling, the best elements 
should be considered. Preliminary assumption, adopted by the authors of the work, is as follows: 
local stiffeners should be modelled as beams (1-D element) and global stiffeners (like main 
frames) should be modelled by 2-D elements. This assumption has to be checked. 
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Though the analysis was done for a beam, the same procedure can be applied to other 
structures like ship deck (stiffened panel), engine room of a ship etc. that may be subjected to 
resonant vibration. Those parts of the ship structure should also be analysed. The authors plan to 
perform comparative analyses with measurements with taking into account beams with failures. 
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