Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we investigate the stability of an additive-quadratic-quartic functional equation f(x+2y)+f(x-2y) - 2f(x+y) - 2f(-x-y) - 2f(x-y) - 2f(y-x)+4f(-x)+2f(x) - f(2y) - f(-2y)+4f(y)+4f(-y)=0 by the direct method in the sense of Găvruta.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Department of Mathematics, Kangnam University, Yongin, Gyoenggi 16979, Republic of Korea
autor
- Department of Mathematics Education, Gongju National University of Education, Gongju, 32553, Republic of Korea
Bibliografia
- [1] H. Azadi-Kenary, J.R. Lee, and C. Park, Non-Archimedean stability of an AQQ functional equation, J. Comput. Anal. Appl. 14 (2012), no. 2, 211–227.
- [2] M. Mohamadi, Y.J. Cho, C. Park, P. Vetro, and R. Saadati, Random stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), 754210, DOI: 10.1155/2010/754210.
- [3] C. Park, Fuzzy stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), 253040, DOI: 10.1155/2010/253040.
- [4] Y.-H. Lee, A fixed point approach to the stability of an additive-quadratic-quartic functional equation, Honam Mathematical J. (2019), accepted.
- [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [6] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
- [7] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f98d4b5f-9504-4a70-8d72-5c88a2c833fc