PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Steel soil composite bridge: an alternative design solution for short-span bridge towards sustainability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
European Conference on Buried Flexible Steel Structures (3 ; 24-25.04.2017 ; Rydzyna, Polska)
Języki publikacji
EN
Abstrakty
EN
The construction sector is a major source of greenhouse gases. Under the increasing concern about climate change and growing construction activities, the whole sector is challenged to shift focus toward sustainable solutions. The traditional procurement often prioritizes technical and economic viability, while their environmental performance is overlooked. Today’s designers are urged to seek new design options to reduce environmental burdens. Sweden owns more than 24574 bridges, most of which are short spans. Among them, the slab frame bridge (CFB) is a common solution. Soil steel composite bridge (SSCB), alternatively, is a functional equivalent solution to CFB and shows advantages in low cost and easy construction. This paper compares the environmental performance between these two bridge types based on life cycle assessment (LCA). The analysis and its results show that the SSCB is preferable over CFB in most of the examined environmental indicators.
Rocznik
Tom
Strony
91--101
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Danish Building Research Institute (SBi), Aalborg University Copenhagen, Denmark
autor
  • Division of Structural Engineering and Bridges, Royal Institute of Technology, Sweden; Skanska Sweden AB
autor
  • Division of Structural Engineering and Bridges, Royal Institute of Technology, Sweden
Bibliografia
  • 1. Trafikverket: Swedish Transport Administration.
  • 2. Safi M. Life-cycle costing: Applications and implementations in bridge investment and management, Doctoral thesis, KTH Royal Institute of Technology, 2013.
  • 3. Flener E.B., Karoumi R. Dynamic testing of a soil-steel composite railway bridge. Engineering structures. 2009. 31(12): 2803-11.
  • 4. Pettersson L., Flener E.B., Sundquist H. Design of Soil-Steel Composite Bridges. Structural Engineering International. 2015; 25(2): 159-72.
  • 5. Guinee J.B. Handbook on life cycle assessment operational guide to the ISO standards. The international journal of life cycle assessment. 2002. 7(5):311.
  • 6. Baumann H., Tillman A.M. The Hitch Hiker's Guide to LCA. An orientation in life cycle assessment methodology and application. External organization. 2004.
  • 7. ISO 14040: 2006. Environmental management-Life cycle assessment-Principles and framework. 2006.
  • 8. European Commission. Joint Research Centre. 1LCD Handbook: General Guide for Life Cycle Assessment: Detailed Guidance. Publications Office of the European Union; 2010.
  • 9. Thiebault V., Du G., Karoumi R. Design of railway bridges considering life-cycle assessment. In Proceedings of the Institution of Civil Engineers: Bridge Engineering 2013, 166(4): 240-251.
  • 10. Du G., Karoumi R. Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering. 2013. 9(11):1149-60.
  • 11. Du G., Karoumi R. Life cycle assessment framework for railway bridges: literature survey and critical issues. Structure and Infrastructure Engineering. 2014a; 10(3):277-94.
  • 12. Horvath A., Hendrickson C. Steel versus steel-reinforced concrete bridges: Environmental assessment. Journal of Infrastructure Systems. 1998. 4(3):111-7.
  • 13. Widman J. Environmental impact assessment of steel bridges. Journal of Constructional Steel Research. 1998 Jun 30; 46(1):291-293.
  • 14. Goedkoop M., Heijungs R., Huijbregts M., De Schryver A., Struijs J, van Zelm R. ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. 2009.
  • 15. Du G., Safi M, Pettersson L., Karoumi R. Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment. 2014b; 19(12):1948-64.
  • 16. Du G. Life cycle assessment of bridges, model development and case studies, Doctoral thesis, KTH Royal Institute of Technology, 2015.
  • 17. Mattsson H.Å, Sundquist H. The real service life of road bridges. In Proceedings of the Institution of Civil Engineers: Bridge Engineering. 2007. 160(4):173-179.
  • 18. BaTMan - Bridge and Tunnel Management in Sweden
  • 19. Wadi H. Soil Steel Composite Bridges: A comparison between the Pettersson-Sundquist design method and the Klöppel & Glock design method including finite element modelling. Master thesis, KTH Royal Institute of Technology, 2012.
  • 20. Ekvall, Tomas; Tillman, Anne-Marie. Open-loop recycling: criteria for allocation procedures. The international journal of life cycle assessment, 1997; 2(3): 155-162.
  • 21. Nicholson A.L., Olivetti E.A., Gregory J.R., Field F., Kirchain R.E. End-of-life LCA allocation methods: open loop recycling impacts on robustness of material selection decisions. IEEE International Symposium on 2009: 1-6.
  • 22. Stripple H. Life cycle assessment of road. A pilot study for inventory analysis. Rapport IVL Swedish Environmental Research Institute. 2001: 96.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f97c9bf0-6372-4a43-a5c9-c1b70ed2e570
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.